FUNCTION dustem_plugin_stellar_population, key=key, val=val, scope=scope, paramtag=paramtag,help=help,test=test

;+
; NAME:
;    dustem_plugin_stellar_population
; PURPOSE:
;    replaces the default DUSTEM ISRF with a composite stellar spectrum
; CATEGORY:
;    DUSTEM Wrapper
; CALLING SEQUENCE:
;    dustem_plugin_stellar_population(key=key,val=val)
; INPUTS:
;    None
; OPTIONAL INPUT PARAMETERS:
;    key  = input parameter number
;    val  = input parameter value
; OUTPUTS:
;    None
; OPTIONAL OUTPUT PARAMETERS:
;    None
; ACCEPTED KEY-WORDS:
;    help                  = if set, print this help
; COMMON BLOCKS:
;    None
; SIDE EFFECTS:
;    None
; RESTRICTIONS:
;    The dustem fortran code must be installed
;    The dustem idl wrapper must be installed
; PROCEDURE:
;    This is a dustem plugin
;-
;- HISTORY: ADDED STELLAR LUMINOSITY CLASSES

IF keyword_set(test) THEN stop

IF keyword_set(help) THEN BEGIN
  doc_library,'dustem_plugin_stellar_population'
  goto,the_end
ENDIF

IF keyword_set(scope) THEN BEGIN    
    out=0
    goto, the_scope
ENDIF 

IF keyword_set(paramtag) THEN BEGIN   
    out=0
    goto, the_paramtag
ENDIF

out=0;Do we need to initialize the output?

;===========Initializing the defaut stellar population structure===========
one_pop={radius:0.,temperature:0.,distance:0.,nstars:0.,popid:''} 

;===========Counters===========
popnumber = 0.
counto = 0.
countb = 0.
counta = 0.
countf = 0.
countg = 0.
;==============================

;===========Constants (in cgs)========== (except for the stellar population distance (in pc))
rsun2cm = 6.957e10 

;================NOTA BENE========================================================================== 
;DATA IS NOW RETRIEVED FROM THIS TEXT FILE: "A Modern Mean Dwarf Stellar Color and Effective Temperature Sequence"  
;NB: intermediate spectral classes '.5' are not taken into account - this will probably have to change
;NB: Also contact we need to contact the reasercher who wrote the text file because he said so in it.
;Other luminosity classes Should be included (only MS so far). 
;BB approximation is a first degree 'bad' approximation because of the lack of radiative transfer especially at the 
;photosphere of stars. 
;REMARKS: BECAUSE WE STILL HAVEN'T SET THE DEFAULT VALUE FOR THE MAJORIY OF THE STELLAR POULATIONS,THE CORRESPONDING LINES ARE COMMENTED INSTEAD OF SETTING ARBITRARY VALUES. 
;CONSIDERED STARS: SPEC_TYPE(N=5) = OBAFG, LUM_CLASS(N=10) = IA+,IA,IAB,IB,II,III,IV,V,VI,VII 
;KM spectral types are not included because their UV part was not that important to excite the dust.
;This will help ease and shorten the fitting procedure
;If the user wants to use them without having to read the entirety of this plugin please contact the DustEmWrap team. 

IF keyword_set(key) THEN BEGIN 
       
    
    ;###READING OF MS DATA###
    file = !dustem_wrap_soft_dir+'Data/STELLARPOPS/EEM_dwarf_UBVIJHK_colors_Teff.txt'
    frmt = '(A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A)'

    readcol, file, V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12,V13,V14,V15,V16,V17,V18,V20,V21,V22,V23,V24,V25,V26,V27,V28,V29,V30,V31,V32, format=frmt, delim=' ', comment='#',/nan,/silent
    ;Paramters that are needed for the BB approximation (horrible approximation even for MS stars)
    SpecType_MS = V1
    T_eff_MS = V2
    R_star_MS = V7
    
    ;JPB: This is highly non standard and makes Fawlty go "Segmentation fault"
    ;lumclass = (strmid(key,2)).remove(-1) ; extracting the luminosity class strings 
    ;IC: Yes but we need to take into account when luminosity class is two characters and not just one. ie: IV instead of V. 
    ;But since we only have MS (V) data, (lumclass[i]=strmid(key[i],2,1)) should be ok but I'm correcting it for future input.
    lumclass=strarr(n_elements(key))
    FOR i=0L,n_elements(key)-1 DO BEGIN
        lumclass[i]=strmid(key[i],2,strlen(key[i])-3)
    ENDFOR
    
    
    params = strmid(key,0,/reverse_offset) ; extracting the indices (in the 'key' array) of the stellar parameters to fit  
    
    ; Locating the O3 stellar population parameters - this new code structure accounts for the presence of different luminosity classes.
    testo3 = strupcase(strmid(key,0,2)) EQ 'O3' ;NB: test is like this so that user can use lowercase for spectral class
    ind = where(testo3,countindo3) 
    
    ; retrieveing the defaut values from the txt database
    tsto3 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'O3' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tsto3,ctdato3)
    if ctdato3 ne 0 then begin
        
        T_eff_MS_o3 = double(T_eff_MS(indat))
        R_star_MS_o3 = double(R_star_MS(indat))
        
    endif
    
    IF countindo3 NE 0 THEN BEGIN 
        lumclasso3 = lumclass(ind)
        nlmo3 = n_elements(lumclasso3)
        indo3_1 = fltarr(nlmo3)
        indo3_2 = indo3_1
        indo3_3 = indo3_1
        indo3_4 = indo3_1  
        countindo3_1 = indo3_1
        countindo3_2 = indo3_1 
        countindo3_3 = indo3_1
        countindo3_4 = indo3_1  
        FOR i=0L,nlmo3-1 DO BEGIN
            popnumber+=1
            counto+=1
            indo3_1[i] =  where(testo3 and params EQ 1, countindo3_1x); index of radius of this stellar population in the val array
            countindo3_1[i] = countindo3_1x
            indo3_2[i] =  where(testo3 and params EQ 2, countindo3_2x); index of temperature of this stellar population in the val array
            countindo3_2[i] = countindo3_2x
            indo3_3[i] =  where(testo3 and params EQ 3, countindo3_3x); index of distance of this stellar population in the val array
            countindo3_3[i] = countindo3_3x
            indo3_4[i] =  where(testo3 and params EQ 4, countindo3_4x); index of the nstars of this stellar population in the val array (Q: does it make sense to have an nstars>1.? If not upper limiting it in the general fitting procedure might be handy)
            countindo3_4[i] = countindo3_4x
        ENDFOR  
    ENDIF
    
    ; Locating the O4 stellar population parameters
    testo4 = strupcase(strmid(key,0,2)) EQ 'O4'
    ind = where(testo4,countindo4)
    
    ; retrieveing the defaut values from the txt database
    tsto4 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'O4' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tsto4,ctdato4)
    if ctdato4 ne 0 then begin
        
        T_eff_MS_o4 = double(T_eff_MS(indat))
        R_star_MS_o4 = double(R_star_MS(indat))
        
    endif
    IF countindo4 NE 0 THEN BEGIN 
        lumclasso4 = lumclass(ind)
        nlmo4 = n_elements(lumclasso4)
        indo4_1 = fltarr(nlmo4)
        indo4_2 = indo4_1
        indo4_3 = indo4_1
        indo4_4 = indo4_1 
        countindo4_1 = indo4_1
        countindo4_2 = indo4_1
        countindo4_3 = indo4_1
        countindo4_4 = indo4_1
        FOR i=0L,nlmo4-1 DO BEGIN
            popnumber+=1
            counto+=1
            indo4_1[i] =  where(testo4 and params EQ 1, countindo4_1x); index of radius of this stellar population in the val array
            countindo4_1[i] = countindo4_1x
            indo4_2[i] =  where(testo4 and params EQ 2, countindo4_2x); index of temperature of this stellar population in the val array
            countindo4_2[i] = countindo4_2x
            indo4_3[i] =  where(testo4 and params EQ 3, countindo4_3x); index of distance of this stellar population in the val array
            countindo4_3[i] = countindo4_3x
            indo4_4[i] =  where(testo4 and params EQ 4, countindo4_4x); index of the nstars of this stellar population in the val array
            countindo4_4[i] = countindo4_4x
        ENDFOR
    ENDIF
    
    ; Locating the O5 stellar population parameters
    testo5 = strupcase(strmid(key,0,2)) EQ 'O5' 
    ind = where(testo5,countindo5)
    
    ; retrieveing the defaut values from the txt database
    tsto5 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'O5' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tsto5,ctdato5)
    if ctdato5 ne 0 then begin
        
        T_eff_MS_o5 = double(T_eff_MS(indat))
        R_star_MS_o5 = double(R_star_MS(indat))
        
    endif
    IF countindo5 NE 0 THEN BEGIN
        lumclasso5 = lumclass(ind)
        nlmo5 = n_elements(lumclasso5)
        indo5_1 = fltarr(nlmo5)
        indo5_2 = indo5_1
        indo5_3 = indo5_1
        indo5_4 = indo5_1   
        countindo5_1 = indo5_1
        countindo5_2 = indo5_1
        countindo5_3 = indo5_1
        countindo5_4 = indo5_1
        FOR i=0L,nlmo5-1 DO BEGIN
            popnumber+=1
            counto+=1
            indo5_1[i] =  where(testo5 and params EQ 1, countindo5_1x); index of radius of this stellar population in the val array
            countindo5_1[i] = countindo5_1x
            indo5_2[i] =  where(testo5 and params EQ 2, countindo5_2x); index of temperature of this stellar population in the val array
            countindo5_2[i] = countindo5_2x
            indo5_3[i] =  where(testo5 and params EQ 3, countindo5_3x); index of distance of this stellar population in the val array
            countindo5_3[i] = countindo5_3x
            indo5_4[i] =  where(testo5 and params EQ 4, countindo5_4x); index of the nstars of this stellar population in the val array
            countindo5_4[i] = countindo5_4x
        ENDFOR
    ENDIF
    
    ; Locating the O6 stellar population parameters
    testo6 = strupcase(strmid(key,0,2)) EQ 'O6'
    ind = where(testo6,countindo6)
    ; retrieveing the defaut values from the txt database
    tsto6 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'O6' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tsto6,ctdato6)
    if ctdato6 ne 0 then begin
        
        T_eff_MS_o6 = double(T_eff_MS(indat))
        R_star_MS_o6 = double(R_star_MS(indat))
        
    endif
    IF countindo6 NE 0 THEN BEGIN
        lumclasso6 = lumclass(ind)
        nlmo6 = long(n_elements(lumclasso6))
        indo6_1 = fltarr(nlmo6)
        indo6_2 = indo6_1
        indo6_3 = indo6_1
        indo6_4 = indo6_1    
        countindo6_1 = indo6_1
        countindo6_2 = indo6_1
        countindo6_3 = indo6_1
        countindo6_4 = indo6_1
        FOR i=0L,nlmo6-1 DO BEGIN
            popnumber+=1
            counto+=1
            indo6_1[i] =  where(testo6 and params EQ 1, countindo6_1x); index of radius of this stellar population in the val array
            countindo6_1[i] = countindo6_1x
            indo6_2[i] =  where(testo6 and params EQ 2, countindo6_2x); index of temperature of this stellar population in the val array
            countindo6_2[i] = countindo6_2x
            indo6_3[i] =  where(testo6 and params EQ 3, countindo6_3x); index of distance of this stellar population in the val array
            countindo6_3[i] = countindo6_3x
            indo6_4[i] =  where(testo6 and params EQ 4, countindo6_4x); index of the nstars of this stellar population in the val array
            countindo6_4[i] = countindo6_4x
        ENDFOR
    ENDIF
    
    
    ; Locating the O7 stellar population parameters
    testo7 = strupcase(strmid(key,0,2)) EQ 'O7' 
    ind = where(testo7,countindo7)
    ; retrieveing the defaut values from the txt database
    tsto7 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'O7' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tsto7,ctdato7)
    if ctdato7 ne 0 then begin
        
        T_eff_MS_o7 = double(T_eff_MS(indat))
        R_star_MS_o7 = double(R_star_MS(indat))
        
    endif
    IF countindo7 NE 0 THEN BEGIN
        lumclasso7 = lumclass(ind)
        nlmo7 = n_elements(lumclasso7)
        indo7_1 = fltarr(nlmo7)
        indo7_2 = indo7_1
        indo7_3 = indo7_1
        indo7_4 = indo7_1    
        countindo7_1 = indo7_1
        countindo7_2 = indo7_1
        countindo7_3 = indo7_1
        countindo7_4 = indo7_1
        FOR i=0L,nlmo7-1 DO BEGIN
            popnumber+=1
            counto+=1
            indo7_1[i] =  where(testo7 and params EQ 1, countindo7_1x); index of radius of this stellar population in the val array
            countindo7_1[i] = countindo7_1x
            indo7_2[i] =  where(testo7 and params EQ 2, countindo7_2x); index of temperature of this stellar population in the val array
            countindo7_2[i] = countindo7_2x
            indo7_3[i] =  where(testo7 and params EQ 3, countindo7_3x); index of distance of this stellar population in the val array
            countindo7_3[i] = countindo7_3x
            indo7_4[i] =  where(testo7 and params EQ 4, countindo7_4x); index of the nstars of this stellar population in the val array
            countindo7_4[i] = countindo7_4x
        ENDFOR
    ENDIF
    
    ; Locating the O8 stellar population parameters
    testo8 = strupcase(strmid(key,0,2)) EQ 'O8' 
    ind = where(testo8,countindo8)
    ; retrieveing the defaut values from the txt database
    tsto8 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'O8' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tsto8,ctdato8)
    if ctdato8 ne 0 then begin
        
        T_eff_MS_o8 = double(T_eff_MS(indat))
        R_star_MS_o8 = double(R_star_MS(indat))
        
    endif
    IF countindo8 NE 0 THEN BEGIN
        lumclasso8 = lumclass(ind)
        nlmo8 = n_elements(lumclasso8)
        indo8_1 = fltarr(nlmo8)
        indo8_2 = indo8_1
        indo8_3 = indo8_1
        indo8_4 = indo8_1   
        countindo8_1 = indo8_1
        countindo8_2 = indo8_1
        countindo8_3 = indo8_1
        countindo8_4 = indo8_1
        FOR i=0L,nlmo8-1 DO BEGIN
            popnumber+=1
            counto+=1
            indo8_1[i] =  where(testo8 and params EQ 1, countindo8_1x); index of radius of this stellar population in the val array
            countindo8_1[i] = countindo8_1x
            indo8_2[i] =  where(testo8 and params EQ 2, countindo8_2x); index of temperature of this stellar population in the val array
            countindo8_2[i] = countindo8_2x
            indo8_3[i] =  where(testo8 and params EQ 3, countindo8_3x); index of distance of this stellar population in the val array
            countindo8_3[i] = countindo8_3x
            indo8_4[i] =  where(testo8 and params EQ 4, countindo8_4x); index of the nstars of this stellar population in the val array
            countindo8_4[i] = countindo8_4x
        ENDFOR
    ENDIF
    
    ; Locating the O9 stellar population parameters
    testo9 = strupcase(strmid(key,0,2)) EQ 'O9' 
    ind = where(testo9,countindo9)
    ; retrieveing the defaut values from the txt database
    tsto9 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'O9' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tsto9,ctdato9)
    if ctdato9 ne 0 then begin
        
        T_eff_MS_o9 = double(T_eff_MS(indat))
        R_star_MS_o9 = double(R_star_MS(indat))
        
    endif
    IF countindo9 NE 0 THEN BEGIN
        lumclasso9 = strupcase(lumclass(ind))
        nlmo9 = long(n_elements(lumclasso9))
        indo9_1 = fltarr(nlmo9)
        indo9_2 = indo9_1 
        indo9_3 = indo9_1 
        indo9_4 = indo9_1    
        countindo9_1 = indo9_1 
        countindo9_2 = indo9_1 
        countindo9_3 = indo9_1 
        countindo9_4 = indo9_1  
        FOR i=0L,nlmo9-1 DO BEGIN
            popnumber+=1
            counto+=1
            indo9_1[i] =  where(testo9 and params EQ 1, countindo9_1x); index of radius of this stellar population in the val array
            countindo9_1[i] = countindo9_1x
            indo9_2[i] =  where(testo9 and params EQ 2, countindo9_2x); index of temperature of this stellar population in the val array
            countindo9_2[i] = countindo9_2x
            indo9_3[i] =  where(testo9 and params EQ 3, countindo9_3x); index of distance of this stellar population in the val array
            countindo9_3[i] = countindo9_3x
            indo9_4[i] =  where(testo9 and params EQ 4, countindo9_4x); index of the nstars of this stellar population in the val array
            countindo9_4[i] = countindo9_4x
        ENDFOR
    ENDIF
    
    ;======================================================
    
    ; Locating the B0 stellar population parameters
    testb0 = strupcase(strmid(key,0,2)) EQ 'B0' 
    ind = where(testb0,countindb0)
    ; retrieveing the defaut values from the txt database
    tstb0 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'B0' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstb0,ctdatb0)
    if ctdatb0 ne 0 then begin
        
        T_eff_MS_b0 = double(T_eff_MS(indat))
        R_star_MS_b0 = double(R_star_MS(indat))
        
    endif
    IF countindb0 NE 0 THEN BEGIN
         lumclassb0 = uniq(lumclass(ind))
         nlmb0 = n_elements(lumclassb0)
         indb0_1 = fltarr(nlmb0)
         indb0_2 = indb0_1
         indb0_3 = indb0_1
         indb0_4 = indb0_1  
         countindb0_1 = indb0_1
         countindb0_2 = indb0_1
         countindb0_3 = indb0_1
         countindb0_4 = indb0_1       
         FOR i=0L,nlmb0-1 DO BEGIN   
            popnumber+=1
            countb+=1
            indb0_1[i] =  where(testb0 and params EQ 1, countindb0_1x); index of radius of this stellar population in the val array
            countindb0_1[i] = countindb0_1x
            indb0_2[i] =  where(testb0 and params EQ 2, countindb0_2x); index of temperature of this stellar population in the val array
            countindb0_2[i] = countindb0_2x
            indb0_3[i] =  where(testb0 and params EQ 3, countindb0_3x); index of distance of this stellar population in the val array
            countindb0_3[i] = countindb0_3x
            indb0_4[i] =  where(testb0 and params EQ 4, countindb0_4x); index of the nstars of this stellar population in the val array
            countindb0_4[i] = countindb0_4x
        ENDFOR
    ENDIF
    
    ; Locating the B1 stellar population parameters
    testb1 = strupcase(strmid(key,0,2)) EQ 'B1' 
    ind = where(testb1,countindb1)
    ; retrieveing the defaut values from the txt database
    tstb1 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'B1' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstb1,ctdatb1)
    if ctdatb1 ne 0 then begin
        
        T_eff_MS_b1 = double(T_eff_MS(indat))
        R_star_MS_b1 = double(R_star_MS(indat))
        
    endif
    IF countindb1 NE 0 THEN BEGIN
        lumclassb1 = strupcase(lumclass(ind))
        nlmb1 = long(n_elements(lumclassb1))
        indb1_1 = fltarr(nlmb1)
        indb1_2 = indb1_1
        indb1_3 = indb1_1
        indb1_4 = indb1_1 
        countindb1_1 = indb1_1
        countindb1_2 = indb1_1
        countindb1_3 = indb1_1
        countindb1_4 = indb1_1     
        FOR i=0L,nlmb1-1 DO BEGIN 
            popnumber+=1
            countb+=1
            indb1_1[i] =  where(testb1 and params EQ 1, countindb1_1x); index of radius of this stellar population in the val array
            countindb1_1[i] = countindb1_1x
            indb1_2[i] =  where(testb1 and params EQ 2, countindb1_2x); index of temperature of this stellar population in the val array
            countindb1_2[i] = countindb1_2x
            indb1_3[i] =  where(testb1 and params EQ 3, countindb1_3x); index of distance of this stellar population in the val array
            countindb1_3[i] = countindb1_3x
            indb1_4[i] =  where(testb1 and params EQ 4, countindb1_4x); index of the nstars of this stellar population in the val array
            countindb1_4[i] = countindb1_4x
        ENDFOR
    ENDIF
    
    ; Locating the B2 stellar population parameters
    testb2 = strupcase(strmid(key,0,2)) EQ 'B2' 
    ind = where(testb2,countindb2)
    ; retrieveing the defaut values from the txt database
    tstb2 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'B2' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstb2,ctdatb2)
    if ctdatb2 ne 0 then begin
        
        T_eff_MS_b2 = double(T_eff_MS(indat))
        R_star_MS_b2 = double(R_star_MS(indat))
        
    endif
    IF countindb2 NE 0 THEN BEGIN
        lumclassb2 = uniq(lumclass(ind))
        nlmb2 = n_elements(lumclassb2)
        indb2_1 = fltarr(nlmb2)
        indb2_2 = indb2_1
        indb2_3 = indb2_1
        indb2_4 = indb2_1    
        countindb2_1 = indb2_1
        countindb2_2 = indb2_1
        countindb2_3 = indb2_1
        countindb2_4 = indb2_1
        FOR i=0L,nlmb2-1 DO BEGIN 
            popnumber+=1
            countb+=1
            indb2_1[i] =  where(testb2 and params EQ 1, countindb2_1x); index of radius of this stellar population in the val array
            countindb2_1[i] = countindb2_1x
            indb2_2[i] =  where(testb2 and params EQ 2, countindb2_2x); index of temperature of this stellar population in the val array
            countindb2_2[i] = countindb2_2x
            indb2_3[i] =  where(testb2 and params EQ 3, countindb2_3x); index of distance of this stellar population in the val array
            countindb2_3[i] = countindb2_3x
            indb2_4[i] =  where(testb2 and params EQ 4, countindb2_4x); index of the nstars of this stellar population in the val array
            countindb2_4[i] = countindb2_4x
        ENDFOR
    ENDIF
    
    ; Locating the B3 stellar population parameters
    testb3 = strupcase(strmid(key,0,2)) EQ 'B3' 
    ind = where(testb3,countindb3)
    ; retrieveing the defaut values from the txt database
    tstb3 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'B3' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstb3,ctdatb3)
    if ctdatb3 ne 0 then begin
        
        T_eff_MS_b3 = double(T_eff_MS(indat))
        R_star_MS_b3 = double(R_star_MS(indat))
        
    endif
    IF countindb3 NE 0 THEN BEGIN
        lumclassb3 = uniq(lumclass(ind))
        nlmb3 = n_elements(lumclassb3)
        indb3_1 = fltarr(nlmb3)
        indb3_2 = indb3_1
        indb3_3 = indb3_1
        indb3_4 = indb3_1
        countindb3_1 = indb3_1
        countindb3_2 = indb3_1
        countindb3_3 = indb3_1
        countindb3_4 = indb3_1
        FOR i=0L,nlmb3-1 DO BEGIN 
            popnumber+=1
            countb+=1
            indb3_1[i] =  where(testb3 and params EQ 1, countindb3_1x); index of radius of this stellar population in the val array
            countindb3_1[i] = countindb3_1x
            indb3_2[i] =  where(testb3 and params EQ 2, countindb3_2x); index of temperature of this stellar population in the val array
            countindb3_2[i] = countindb3_2x
            indb3_3[i] =  where(testb3 and params EQ 3, countindb3_3x); index of distance of this stellar population in the val array
            countindb3_3[i] = countindb3_3x
            indb3_4[i] =  where(testb3 and params EQ 4, countindb3_4x); index of the nstars of this stellar population in the val array
            countindb3_4[i] = countindb3_4x
        ENDFOR
    ENDIF
    
    ; Locating the B4 stellar population parameters
    testb4 = strupcase(strmid(key,0,2)) EQ 'B4' 
    ind = where(testb4,countindb4)
    ; retrieveing the defaut values from the txt database
    tstb4 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'B4' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstb4,ctdatb4)
    if ctdatb4 ne 0 then begin
        
        T_eff_MS_b4 = double(T_eff_MS(indat))
        R_star_MS_b4 = double(R_star_MS(indat))
        
    endif
    IF countindb4 NE 0 THEN BEGIN
        lumclassb4 = uniq(lumclass(ind))
        nlmb4 = n_elements(lumclassb4)
        indb4_1 = fltarr(nlmb4)
        indb4_2 = indb4_1
        indb4_3 = indb4_1
        indb4_4 = indb4_1
        countindb4_1 = indb4_1
        countindb4_2 = indb4_1
        countindb4_3 = indb4_1
        countindb4_4 = indb4_1
        FOR i=0L,nlmb4-1 DO BEGIN 
            popnumber+=1
            countb+=1
            indb4_1[i] =  where(testb4 and params EQ 1, countindb4_1x); index of radius of this stellar population in the val array
            countindb4_1[i] = countindb4_1x
            indb4_2[i] =  where(testb4 and params EQ 2, countindb4_2x); index of temperature of this stellar population in the val array
            countindb4_2[i] = countindb4_2x
            indb4_3[i] =  where(testb4 and params EQ 3, countindb4_3x); index of distance of this stellar population in the val array
            countindb4_3[i] = countindb4_3x
            indb4_4[i] =  where(testb4 and params EQ 4, countindb4_4x); index of the nstars of this stellar population in the val array
            countindb4_4[i] = countindb4_4x
        ENDFOR
    ENDIF
    
    ; Locating the B5 stellar population parameters
    testb5 = strupcase(strmid(key,0,2)) EQ 'B5' 
    ind = where(testb5,countindb5)
    ; retrieveing the defaut values from the txt database
    tstb5 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'B5' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstb5,ctdatb5)
    if ctdatb5 ne 0 then begin
        
        T_eff_MS_b5 = double(T_eff_MS(indat))
        R_star_MS_b5 = double(R_star_MS(indat))
        
    endif
    IF countindb5 NE 0 THEN BEGIN
        lumclassb5 = uniq(lumclass(ind))
        nlmb5 = n_elements(lumclassb5)
        indb5_1 = fltarr(nlmb5)
        indb5_2 = indb5_1
        indb5_3 = indb5_1
        indb5_4 = indb5_1
        countindb5_1 = indb5_1
        countindb5_2 = indb5_1
        countindb5_3 = indb5_1
        countindb5_4 = indb5_1
        FOR i=0L,nlmb5-1 DO BEGIN    
            popnumber+=1
            countb+=1
            indb5_1[i] =  where(testb5 and params EQ 1, countindb5_1x); index of radius of this stellar population in the val array
            countindb5_1[i] = countindb5_1x
            indb5_2[i] =  where(testb5 and params EQ 2, countindb5_2x); index of temperature of this stellar population in the val array
            countindb5_2[i] = countindb5_2x
            indb5_3[i] =  where(testb5 and params EQ 3, countindb5_3x); index of distance of this stellar population in the val array
            countindb5_3[i] = countindb5_3x
            indb5_4[i] =  where(testb5 and params EQ 4, countindb5_4x); index of the nstars of this stellar population in the val array
            countindb5_4[i] = countindb5_4x
        ENDFOR
    ENDIF
    
    ; Locating the B6 stellar population parameters
    testb6 = strupcase(strmid(key,0,2)) EQ 'B6'
    ind = where(testb6,countindb6)
    ; retrieveing the defaut values from the txt database
    tstb6 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'B6' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstb6,ctdatb6)
    if ctdatb6 ne 0 then begin
        
        T_eff_MS_b6 = double(T_eff_MS(indat))
        R_star_MS_b6 = double(R_star_MS(indat))
        
    endif
    IF countindb6 NE 0 THEN BEGIN
        lumclassb6 = uniq(lumclass(ind))
        nlmb6 = n_elements(lumclassb6)
        indb6_1 = fltarr(nlmb6)
        indb6_2 = indb6_1
        indb6_3 = indb6_1
        indb6_4 = indb6_1
        countindb6_1 = indb6_1
        countindb6_2 = indb6_1
        countindb6_3 = indb6_1
        countindb6_4 = indb6_1
        FOR i=0L,nlmb6-1 DO BEGIN 
            popnumber+=1
            countb+=1
            indb6_1[i] =  where(testb6 and params EQ 1, countindb6_1x); index of radius of this stellar population in the val array
            countindb6_1[i] = countindb6_1x
            indb6_2[i] =  where(testb6 and params EQ 2, countindb6_2x); index of temperature of this stellar population in the val array
            countindb6_2[i] = countindb6_2x
            indb6_3[i] =  where(testb6 and params EQ 3, countindb6_3x); index of distance of this stellar population in the val array
            countindb6_3[i] = countindb6_3x
            indb6_4[i] =  where(testb6 and params EQ 4, countindb6_4x); index of the nstars of this stellar population in the val array
            countindb6_4[i] = countindb6_4x
        ENDFOR
    ENDIF
    
    ; Locating the B7 stellar population parameters
    testb7 = strupcase(strmid(key,0,2)) EQ 'B7' 
    ind = where(testb7,countindb7)
    ; retrieveing the defaut values from the txt database
    tstb7 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'B7' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstb7,ctdatb7)
    if ctdatb7 ne 0 then begin
        
        T_eff_MS_b7 = double(T_eff_MS(indat))
        R_star_MS_b7 = double(R_star_MS(indat))
        
    endif
    IF countindb7 NE 0 THEN BEGIN
        lumclassb7 = uniq(lumclass(ind))
        nlmb7 = n_elements(lumclassb7)
        indb7_1 = fltarr(nlmb7)
        indb7_2 = indb7_1
        indb7_3 = indb7_1
        indb7_4 = indb7_1  
        countindb7_1 = indb7_1
        countindb7_2 = indb7_1
        countindb7_3 = indb7_1
        countindb7_4 = indb7_1
        FOR i=0L,nlmb7-1 DO BEGIN 
            popnumber+=1
            countb+=1
            indb7_1[i] =  where(testb7 and params EQ 1, countindb7_1x); index of radius of this stellar population in the val array
            countindb7_1[i] = countindb7_1x
            indb7_2[i] =  where(testb7 and params EQ 2, countindb7_2x); index of temperature of this stellar population in the val array
            countindb7_2[i] = countindb7_2x
            indb7_3[i] =  where(testb7 and params EQ 3, countindb7_3x); index of distance of this stellar population in the val array
            countindb7_3[i] = countindb7_3x
            indb7_4[i] =  where(testb7 and params EQ 4, countindb7_4x); index of the nstars of this stellar population in the val array
            countindb7_4[i] = countindb7_4x
        ENDFOR
    ENDIF
    
    ; Locating the B8 stellar population parameters
    testb8 = strupcase(strmid(key,0,2)) EQ 'B8'  
    ind = where(testb8,countindb8)
    ; retrieveing the defaut values from the txt database
    tstb8 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'B8' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstb8,ctdatb8)
    if ctdatb8 ne 0 then begin
        
        T_eff_MS_b8 = double(T_eff_MS(indat))
        R_star_MS_b8 = double(R_star_MS(indat))
        
    endif
    IF countindb8 NE 0 THEN BEGIN
        lumclassb8 = uniq(lumclass(ind))
        nlmb8 = n_elements(lumclassb8)
        indb8_1 = fltarr(nlmb8)
        indb8_2 = indb8_1
        indb8_3 = indb8_1
        indb8_4 = indb8_1   
        countindb8_1 = indb8_1
        countindb8_2 = indb8_1
        countindb8_3 = indb8_1
        countindb8_4 = indb8_1
        FOR i=0L,nlmb8-1 DO BEGIN
            popnumber+=1
            countb+=1
            indb8_1[i] =  where(testb8 and params EQ 1, countindb8_1x); index of radius of this stellar population in the val array
            countindb8_1[i] = countindb8_1x
            indb8_2[i] =  where(testb8 and params EQ 2, countindb8_2x); index of temperature of this stellar population in the val array
            countindb8_2[i] = countindb8_2x
            indb8_3[i] =  where(testb8 and params EQ 3, countindb8_3x); index of distance of this stellar population in the val array
            countindb8_3[i] = countindb8_3x
            indb8_4[i] =  where(testb8 and params EQ 4, countindb8_4x); index of the nstars of this stellar population in the val array
            countindb8_4[i] = countindb8_4x
        ENDFOR
    ENDIF
    
    ; Locating the B9 stellar population parameters
    testb9 = strupcase(strmid(key,0,2)) EQ 'B9' 
    ind = where(testb9,countindb9)
    ; retrieveing the defaut values from the txt database
    tstb9 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'B9' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstb9,ctdatb9)
    if ctdatb9 ne 0 then begin
        
        T_eff_MS_b9 = double(T_eff_MS(indat))
        R_star_MS_b9 = double(R_star_MS(indat))
        
    endif
    IF countindb9 NE 0 THEN BEGIN
        lumclassb9 = uniq(lumclass(ind))
        nlmb9 = n_elements(lumclassb9)
        indb9_1 = fltarr(nlmb9)
        indb9_2 = indb9_1
        indb9_3 = indb9_1
        indb9_4 = indb9_1   
        countindb9_1 = indb9_1
        countindb9_2 = indb9_1
        countindb9_3 = indb9_1
        countindb9_4 = indb9_1
        FOR i=0L,nlmb9-1 DO BEGIN
            popnumber+=1
            countb+=1
            indb9_1[i] =  where(testb9 and params EQ 1, countindb9_1x); index of radius of this stellar population in the val array
            countindb9_1[i] = countindb9_1x
            indb9_2[i] =  where(testb9 and params EQ 2, countindb9_2x); index of temperature of this stellar population in the val array
            countindb9_2[i] = countindb9_2x
            indb9_3[i] =  where(testb9 and params EQ 3, countindb9_3x); index of distance of this stellar population in the val array
            countindb9_3[i] = countindb9_3x
            indb9_4[i] =  where(testb9 and params EQ 4, countindb9_4x); index of the nstars of this stellar population in the val array
            countindb9_4[i] = countindb9_4x
        ENDFOR
    ENDIF
    
    
    ;======================================================
    
    ; Locating the A0 stellar population parameters
    testa0 = strupcase(strmid(key,0,2)) EQ 'A0' 
    ind = where(testa0,countinda0)
    ; retrieveing the defaut values from the txt database
    tsta0 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'A0' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tsta0,ctdata0)
    if ctdata0 ne 0 then begin
        
        T_eff_MS_a0 = double(T_eff_MS(indat))
        R_star_MS_a0 = double(R_star_MS(indat))
        
    endif
    IF countinda0 NE 0 THEN BEGIN
        lumclassA0 = uniq(lumclass(ind))
        nlmA0 = n_elements(lumclassA0)
        indA0_1 = fltarr(nlmA0)
        indA0_2 = indA0_1 
        indA0_3 = indA0_1 
        indA0_4 = indA0_1    
        countindA0_1 = indA0_1 
        countindA0_2 = indA0_1 
        countindA0_3 = indA0_1 
        countindA0_4 = indA0_1  
        FOR i=0L,nlmA0-1 DO BEGIN
            popnumber+=1
            counta+=1
            inda0_1[i] =  where(testa0 and params EQ 1, countinda0_1x); index of radius of this stellar population in the val array
            countinda0_1[i] = countinda0_1x
            inda0_2[i] =  where(testa0 and params EQ 2, countinda0_2x); index of temperature of this stellar population in the val array
            countinda0_2[i] = countinda0_2x
            inda0_3[i] =  where(testa0 and params EQ 3, countinda0_3x); index of distance of this stellar population in the val array
            countinda0_3[i] = countinda0_3x
            inda0_4[i] =  where(testa0 and params EQ 4, countinda0_4x); index of the nstars of this stellar population in the val array
            countinda0_4[i] =  countinda0_4x
        ENDFOR
    ENDIF
    
    ; Locating the A1 stellar population parameters
    testa1 = strupcase(strmid(key,0,2)) EQ 'A1' 
    ind = where(testa1,countinda1)
     ; retrieveing the defaut values from the txt database
     tsta1 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'A1' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
     indat  = where(tsta1,ctdata1)
     if ctdata1 ne 0 then begin
         
         T_eff_MS_a1 = double(T_eff_MS(indat))
         R_star_MS_a1 = double(R_star_MS(indat))
         
     endif
     
    IF countinda1 NE 0 THEN BEGIN
        lumclassA1 = lumclass(ind)
        nlmA1 = n_elements(lumclassA1)
        indA1_1 = fltarr(nlmA1)
        indA1_2 = indA1_1
        indA1_3 = indA1_1
        indA1_4 = indA1_1  
        countindA1_1 = indA1_1
        countindA1_2 = indA1_1
        countindA1_3 = indA1_1
        countindA1_4 = indA1_1
        FOR i=0L,nlmA1-1 DO BEGIN
            popnumber+=1
            counta+=1
            inda1_1[i] =  where(testa1 and params EQ 1, countinda1_1x); index of radius of this stellar population in the val array
            countinda1_1[i] = countinda1_1x
            inda1_2[i] =  where(testa1 and params EQ 2, countinda1_2x); index of temperature of this stellar population in the val array
            countinda1_2[i] = countinda1_2x
            inda1_3[i] =  where(testa1 and params EQ 3, countinda1_3x); index of distance of this stellar population in the val array
            countinda1_3[i] = countinda1_3x
            inda1_4[i] =  where(testa1 and params EQ 4, countinda1_4x); index of the nstars of this stellar population in the val array
            countinda1_4[i] = countinda1_4x
        ENDFOR
    ENDIF
    
    ; Locating the A2 stellar population parameters
    testa2 = strupcase(strmid(key,0,2)) EQ 'A2' 
    ind = where(testa2,countinda2)
     ; retrieveing the defaut values from the txt database
     tsta2 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'A2' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
     indat  = where(tsta2,ctdata2)
     if ctdata2 ne 0 then begin
         
         T_eff_MS_a2 = double(T_eff_MS(indat))
         R_star_MS_a2 = double(R_star_MS(indat))
         
     endif
    IF countinda2 NE 0 THEN BEGIN
        lumclassA2 = lumclass(ind)
        nlmA2 = n_elements(lumclassA2)
        indA2_1 = fltarr(nlmA2)
        indA2_2 = indA2_1
        indA2_3 = indA2_1
        indA2_4 = indA2_1
        countindA2_1 = indA2_1
        countindA2_2 = indA2_1
        countindA2_3 = indA2_1
        countindA2_4 = indA2_1
        FOR i=0L,nlmA2-1 DO BEGIN
            popnumber+=1
            counta+=1
            inda2_1[i] =  where(testa2 and params EQ 1, countinda2_1x); index of radius of this stellar population in the val array
            countinda2_1[i] = countinda2_1x
            inda2_2[i] =  where(testa2 and params EQ 2, countinda2_2x); index of temperature of this stellar population in the val array
            countinda2_2[i] = countinda2_2x
            inda2_3[i] =  where(testa2 and params EQ 3, countinda2_3x); index of distance of this stellar population in the val array
            countinda2_3[i] = countinda2_3x
            inda2_4[i] =  where(testa2 and params EQ 4, countinda2_4x); index of the nstars of this stellar population in the val array
            countinda2_4[i] = countinda2_4x
        ENDFOR
    ENDIF
    
    ; Locating the A3 stellar population parameters
    testa3 = strupcase(strmid(key,0,2)) EQ 'A3' 
    ind = where(testa3,countinda3)
     ; retrieveing the defaut values from the txt database
     tsta3 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'A3' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
     indat  = where(tsta3,ctdata3)
     if ctdata3 ne 0 then begin
         
         T_eff_MS_a3 = double(T_eff_MS(indat))
         R_star_MS_a3 = double(R_star_MS(indat))
         
     endif
    IF countinda3 NE 0 THEN BEGIN
        lumclassA3 = lumclass(ind)
        nlmA3 = n_elements(lumclassA3)
        indA3_1 = fltarr(nlmA3)
        indA3_2 = indA3_1
        indA3_3 = indA3_1
        indA3_4 = indA3_1    
        countindA3_1 = indA3_1
        countindA3_2 = indA3_1
        countindA3_3 = indA3_1
        countindA3_4 = indA3_1
        FOR i=0L,nlmA3-1 DO BEGIN
            popnumber+=1
            counta+=1
            inda3_1[i] =  where(testa3 and params EQ 1, countinda3_1x); index of radius of this stellar population in the val array
            countinda3_1[i] = countinda3_1x
            inda3_2[i] =  where(testa3 and params EQ 2, countinda3_2x); index of temperature of this stellar population in the val array
            countinda3_2[i] = countinda3_2x
            inda3_3[i] =  where(testa3 and params EQ 3, countinda3_3x); index of distance of this stellar population in the val array
            countinda3_3[i] = countinda3_3x
            inda3_4[i] =  where(testa3 and params EQ 4, countinda3_4x); index of the nstars of this stellar population in the val array
            countinda3_4[i] = countinda3_4x
        ENDFOR
    ENDIF
    
    ; Locating the A4 stellar population parameters
    testa4 = strupcase(strmid(key,0,2)) EQ 'A4' 
    ind = where(testa4,countinda4)
     ; retrieveing the defaut values from the txt database
     tsta4 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'A4' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
     indat  = where(tsta4,ctdata4)
     if ctdata4 ne 0 then begin
         
         T_eff_MS_a4 = double(T_eff_MS(indat))
         R_star_MS_a4 = double(R_star_MS(indat))
         
     endif
    IF countinda4 NE 0 THEN BEGIN
        lumclassA4 = lumclass(ind)
        nlmA4 = n_elements(lumclassA4)
        indA4_1 = fltarr(nlmA4)
        indA4_2 = indA4_1
        indA4_3 = indA4_1
        indA4_4 = indA4_1   
        countindA4_1 = indA4_1
        countindA4_2 = indA4_1
        countindA4_3 = indA4_1
        countindA4_4 = indA4_1
        FOR i=0L,nlmA4-1 DO BEGIN
            popnumber+=1
            counta+=1
            inda4_1[i] =  where(testa4 and params EQ 1, countinda4_1x); index of radius of this stellar population in the val array
            countinda4_1[i] = countinda4_1x
            inda4_2[i] =  where(testa4 and params EQ 2, countinda4_2x); index of temperature of this stellar population in the val array
            countinda4_2[i] = countinda4_2x
            inda4_3[i] =  where(testa4 and params EQ 3, countinda4_3x); index of distance of this stellar population in the val array
            countinda4_3[i] = countinda4_3x
            inda4_4[i] =  where(testa4 and params EQ 4, countinda4_4x); index of the nstars of this stellar population in the val array
            countinda4_4[i] = countinda4_4x
        ENDFOR
    ENDIF
    
    ; Locating the A5 stellar population parameters
    testa5 = strupcase(strmid(key,0,2)) EQ 'A5' 
    ind = where(testa5,countinda5)
     ; retrieveing the defaut values from the txt database
     tsta5 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'A5' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
     indat  = where(tsta5,ctdata5)
     if ctdata5 ne 0 then begin
         
         T_eff_MS_a5 = double(T_eff_MS(indat))
         R_star_MS_a5 = double(R_star_MS(indat))
         
     endif
    IF countinda5 NE 0 THEN BEGIN
        lumclassA5 = lumclass(ind)
        nlmA5 = n_elements(lumclassA5)
        indA5_1 = fltarr(nlmA5)
        indA5_2 = indA5_1
        indA5_3 = indA5_1
        indA5_4 = indA5_1   
        countindA5_1 = indA5_1
        countindA5_2 = indA5_1
        countindA5_3 = indA5_1
        countindA5_4 = indA5_1
        FOR i=0L,nlmA5-1 DO BEGIN
            popnumber+=1
            counta+=1
            inda5_1[i] =  where(testa5 and params EQ 1, countinda5_1x); index of radius of this stellar population in the val array
            countinda5_1[i] = countinda5_1x
            inda5_2[i] =  where(testa5 and params EQ 2, countinda5_2x); index of temperature of this stellar population in the val array
            countinda5_2[i] = countinda5_2x
            inda5_3[i] =  where(testa5 and params EQ 3, countinda5_3x); index of distance of this stellar population in the val array
            countinda5_3[i] = countinda5_3x
            inda5_4[i] =  where(testa5 and params EQ 4, countinda5_4x); index of the nstars of this stellar population in the val array
            countinda5_4[i] = countinda5_4x
        ENDFOR
    ENDIF
    
    ; Locating the A6 stellar population parameters
    testa6 = strupcase(strmid(key,0,2)) EQ 'A6'
    ind = where(testa6,countinda6)
     ; retrieveing the defaut values from the txt database
     tsta6 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'A6' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
     indat  = where(tsta6,ctdata6)
     if ctdata6 ne 0 then begin
         
         T_eff_MS_a6 = double(T_eff_MS(indat))
         R_star_MS_a6 = double(R_star_MS(indat))
         
     endif
    IF countinda6 NE 0 THEN BEGIN
        lumclassA6 = lumclass(ind)
        nlmA6 = n_elements(lumclassA6)
        indA6_1 = fltarr(nlmA6)
        indA6_2 = indA6_1
        indA6_3 = indA6_1
        indA6_4 = indA6_1   
        countindA6_1 = indA6_1
        countindA6_2 = indA6_1
        countindA6_3 = indA6_1
        countindA6_4 = indA6_1
        FOR i=0L,nlmA6-1 DO BEGIN
            popnumber+=1
            counta+=1
            inda6_1[i] =  where(testa6 and params EQ 1, countinda6_1x); index of radius of this stellar population in the val array
            countinda6_1[i] = countinda6_1x
            inda6_2[i] =  where(testa6 and params EQ 2, countinda6_2x); index of temperature of this stellar population in the val array
            countinda6_2[i] = countinda6_2x
            inda6_3[i] =  where(testa6 and params EQ 3, countinda6_3x); index of distance of this stellar population in the val array
            countinda6_3[i] = countinda6_3x
            inda6_4[i] =  where(testa6 and params EQ 4, countinda6_4x); index of the nstars of this stellar population in the val array
            countinda6_4[i] = countinda6_4x
        ENDFOR
    ENDIF
    
    ; Locating the A7 stellar population parameters
    testa7 = strupcase(strmid(key,0,2)) EQ 'A7'
    ind = where(testa7,countinda7)
    ; retrieveing the defaut values from the txt database
    tsta7 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'A7' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tsta7,ctdata7)
    if ctdata7 ne 0 then begin
         
        T_eff_MS_a7 = double(T_eff_MS(indat))
        R_star_MS_a7 = double(R_star_MS(indat))
        
    endif
    IF countinda7 NE 0 THEN BEGIN
        lumclassA7 = lumclass(ind)
        nlmA7 = n_elements(lumclassA7)
        indA7_1 = fltarr(nlmA7)
        indA7_2 = indA7_1
        indA7_3 = indA7_1
        indA7_4 = indA7_1  
        countindA7_1 = indA7_1
        countindA7_2 = indA7_1
        countindA7_3 = indA7_1
        countindA7_4 = indA7_1
        FOR i=0L,nlmA7-1 DO BEGIN
            popnumber+=1
            counta+=1
            inda7_1[i] =  where(testa7 and params EQ 1, countinda7_1x); index of radius of this stellar population in the val array
            countinda7_1[i] = countinda7_1x
            inda7_2[i] =  where(testa7 and params EQ 2, countinda7_2x); index of temperature of this stellar population in the val array
            countinda7_2[i] = countinda7_2x
            inda7_3[i] =  where(testa7 and params EQ 3, countinda7_3x); index of distance of this stellar population in the val array
            countinda7_3[i] = countinda7_3x
            inda7_4[i] =  where(testa7 and params EQ 4, countinda7_4x); index of the nstars of this stellar population in the val array
            countinda7_4[i] = countinda7_4x
       ENDFOR
    ENDIF
    
    ; Locating the A8 stellar population parameters
    testa8 = strupcase(strmid(key,0,2)) EQ 'A8'
    ind = where(testa8,countinda8)
    ; retrieveing the defaut values from the txt database
    tsta8 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'A8' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tsta8,ctdata8)
    if ctdata8 ne 0 then begin
         
        T_eff_MS_a8 = double(T_eff_MS(indat))
        R_star_MS_a8 = double(R_star_MS(indat))
        
    endif
    IF countinda8 NE 0 THEN BEGIN
        lumclassA8 = lumclass(ind)
        nlmA8 = n_elements(lumclassA8)
        indA8_1 = fltarr(nlmA8)
        indA8_2 = indA8_1
        indA8_3 = indA8_1
        indA8_4 = indA8_1
        countindA8_1 = indA8_1
        countindA8_2 = indA8_1
        countindA8_3 = indA8_1
        countindA8_4 = indA8_1
        FOR i=0L,nlmA8-1 DO BEGIN
            popnumber+=1
            counta+=1
            inda8_1[i] =  where(testa8 and params EQ 1, countinda8_1x); index of radius of this stellar population in the val array
            countinda8_1[i] = countinda8_1x
            inda8_2[i] =  where(testa8 and params EQ 2, countinda8_2x); index of temperature of this stellar population in the val array
            countinda8_2[i] = countinda8_2x
            inda8_3[i] =  where(testa8 and params EQ 3, countinda8_3x); index of distance of this stellar population in the val array
            countinda8_3[i] = countinda8_3x
            inda8_4[i] =  where(testa8 and params EQ 4, countinda8_4x); index of the nstars of this stellar population in the val array
            countinda8_4[i] = countinda8_4x
        ENDFOR
    ENDIF
   
    ; Locating the A9 stellar population parameters
    testa9 = strupcase(strmid(key,0,2)) EQ 'A9' 
    ind = where(testa9,countinda9)
    ; retrieveing the defaut values from the txt database
    tsta9 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'A9' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tsta9,ctdata9)
    if ctdata9 ne 0 then begin
         
        T_eff_MS_a9 = double(T_eff_MS(indat))
        R_star_MS_a9 = double(R_star_MS(indat))
        
    endif
    IF countinda9 NE 0 THEN BEGIN
        lumclassA9 = lumclass(ind)
        nlmA9 = n_elements(lumclassA9)
        indA9_1 = fltarr(nlmA9)
        indA9_2 = indA9_1
        indA9_3 = indA9_1
        indA9_4 = indA9_1    
        countindA9_1 = indA9_1
        countindA9_2 = indA9_1
        countindA9_3 = indA9_1
        countindA9_4 = indA9_1
        FOR i=0L,nlmA9-1 DO BEGIN
            popnumber+=1  
            counta+=1
            inda9_1[i] =  where(testa9 and params EQ 1, countinda9_1x); index of radius of this stellar population in the val array
            countinda9_1[i] = countinda9_1x
            inda9_2[i] =  where(testa9 and params EQ 2, countinda9_2x); index of temperature of this stellar population in the val array
            countinda9_2[i] = countinda9_2x
            inda9_3[i] =  where(testa9 and params EQ 3, countinda9_3x); index of distance of this stellar population in the val array
            countinda9_3[i] = countinda9_3x
            inda9_4[i] =  where(testa9 and params EQ 4, countinda9_4x); index of the nstars of this stellar population in the val array
            countinda9_4[i] = countinda9_4x
        ENDFOR
    ENDIF
    
    
    ;====================================================== 
     
    ; Locating the F0 stellar population parameters 
    testf0 = strupcase(strmid(key,0,2)) EQ 'F0' 
    ind = where(testf0,countindf0)
    ; retrieveing the defaut values from the txt database
    tstf0 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'F0' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstf0,ctdatf0)
    if ctdatf0 ne 0 then begin
         
        T_eff_MS_f0 = double(T_eff_MS(indat))
        R_star_MS_f0 = double(R_star_MS(indat))
        
    endif
    IF countindf0 NE 0 THEN BEGIN
        lumclassF0 = lumclass(ind)
        nlmF0 = n_elements(lumclassF0)
        indF0_1 = fltarr(nlmF0)
        indF0_2 = indF0_1
        indF0_3 = indF0_1
        indF0_4 = indF0_1
        countindF0_1 = indF0_1
        countindF0_2 = indF0_1
        countindF0_3 = indF0_1
        countindF0_4 = indF0_1
        FOR i=0L,nlmF0-1 DO BEGIN
            popnumber+=1
            countf+=1
            indf0_1[i] =  where(testf0 and params EQ 1, countindf0_1x); index of radius of this stellar population in the val array
            countindf0_1[i] = countindf0_1x
            indf0_2[i] =  where(testf0 and params EQ 2, countindf0_2x); index of temperature of this stellar population in the val array
            countindf0_2[i] = countindf0_2x
            indf0_3[i] =  where(testf0 and params EQ 3, countindf0_3x); index of distance of this stellar population in the val array
            countindf0_3[i] = countindf0_3x
            indf0_4[i] =  where(testf0 and params EQ 4, countindf0_4x); index of the nstars of this stellar population in the val array
            countindf0_4[i] = countindf0_4x
        ENDFOR
    ENDIF
    
    ; Locating the F1 stellar population parameters
    testf1 = strupcase(strmid(key,0,2)) EQ 'F1' 
    ind = where(testf1,countindf1)
    ; retrieveing the defaut values from the txt database
    tstf1 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'F1' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstf1,ctdatf1)
    if ctdatf1 ne 0 then begin
         
        T_eff_MS_f1 = double(T_eff_MS(indat))
        R_star_MS_f1 = double(R_star_MS(indat))
        
    endif
    IF countindf1 NE 0 THEN BEGIN
        lumclassF1 = lumclass(ind)
        nlmF1 = n_elements(lumclassF1)
        indF1_1 = fltarr(nlmF1)
        indF1_2 = indF1_1
        indF1_3 = indF1_1
        indF1_4 = indF1_1
        countindF1_1 = indF1_1
        countindF1_2 = indF1_1
        countindF1_3 = indF1_1
        countindF1_4 = indF1_1
        FOR i=0L,nlmF1-1 DO BEGIN
            popnumber+=1
            countf+=1
            indf1_1[i] =  where(testf1 and params EQ 1, countindf1_1x); index of radius of this stellar population in the val array
            countindf1_1[i] = countindf1_1x
            indf1_2[i] =  where(testf1 and params EQ 2, countindf1_2x); index of temperature of this stellar population in the val array
            countindf1_2[i] = countindf1_2x
            indf1_3[i] =  where(testf1 and params EQ 3, countindf1_3x); index of distance of this stellar population in the val array
            countindf1_3[i] = countindf1_3x
            indf1_4[i] =  where(testf1 and params EQ 4, countindf1_4x); index of the nstars of this stellar population in the val array
            countindf1_4[i] = countindf1_4x
        ENDFOR
    ENDIF
    
    ; Locating the F2 stellar population parameters
    testf2 = strupcase(strmid(key,0,2)) EQ 'F2' 
    ind = where(testf2,countindf2)
    ; retrieveing the defaut values from the txt database
    tstf2 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'F2' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstf2,ctdatf2)
    if ctdatf2 ne 0 then begin
         
        T_eff_MS_f2 = double(T_eff_MS(indat))
        R_star_MS_f2 = double(R_star_MS(indat))
        
    endif
    IF countindf2 NE 0 THEN BEGIN
        lumclassF2 = lumclass(ind)
        nlmF2 = n_elements(lumclassF2)
        indF2_1 = fltarr(nlmF2)
        indF2_2 = testf2
        indF2_3 = testf2
        indF2_4 = testf2
        countindF2_1 = testf2
        countindF2_2 = testf2
        countindF2_3 = testf2
        countindF2_4 = testf2
        FOR i=0L,nlmF2-1 DO BEGIN
            popnumber+=1
            countf+=1
            indf2_1[i] =  where(testf2 and params EQ 1, countindf2_1x); index of radius of this stellar population in the val array
            countindf2_1[i] = countindf2_1x
            indf2_2[i] =  where(testf2 and params EQ 2, countindf2_2x); index of temperature of this stellar population in the val array
            countindf2_2[i] = countindf2_2x
            indf2_3[i] =  where(testf2 and params EQ 3, countindf2_3x); index of distance of this stellar population in the val array
            countindf2_3[i] = countindf2_3x
            indf2_4[i] =  where(testf2 and params EQ 4, countindf2_4x); index of the nstars of this stellar population in the val array
            countindf2_4[i] = countindf2_4x
        ENDFOR
    ENDIF
    
    ; Locating the F3 stellar population parameters
    testf3 = strupcase(strmid(key,0,2)) EQ 'F3' 
    ind = where(testf3,countindf3)
    ; retrieveing the defaut values from the txt database
    tstf3 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'F3' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstf3,ctdatf3)
    if ctdatf3 ne 0 then begin
         
        T_eff_MS_f3 = double(T_eff_MS(indat))
        R_star_MS_f3 = double(R_star_MS(indat))
        
    endif
    IF countindf3 NE 0 THEN BEGIN
        lumclassF3 = lumclass(ind)
        nlmF3 = n_elements(lumclassF3)
        indF3_1 = fltarr(nlmF3)
        indF3_2 = indF3_1
        indF3_3 = indF3_1
        indF3_4 = indF3_1
        countindF3_1 = indF3_1
        countindF3_2 = indF3_1
        countindF3_3 = indF3_1
        countindF3_4 = indF3_1
        FOR i=0L,nlmF3-1 DO BEGIN
            popnumber+=1
            countf+=1
            indf3_1[i] =  where(testf3 and params EQ 1, countindf3_1x); index of radius of this stellar population in the val array
            countindf3_1[i] = countindf3_1x
            indf3_2[i] =  where(testf3 and params EQ 2, countindf3_2x); index of temperature of this stellar population in the val array
            countindf3_2[i] = countindf3_2x
            indf3_3[i] =  where(testf3 and params EQ 3, countindf3_3x); index of distance of this stellar population in the val array
            countindf3_3[i] = countindf3_3x
            indf3_4[i] =  where(testf3 and params EQ 4, countindf3_4x); index of the nstars of this stellar population in the val array
            countindf3_4[i] = countindf3_4x
        ENDFOR
    ENDIF
    
    ; Locating the F4 stellar population parameters
    testf4 = strupcase(strmid(key,0,2)) EQ 'F4'
    ind = where(testf4,countindf4)
    ; retrieveing the defaut values from the txt database
    tstf4 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'F4' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstf4,ctdatf4)
    if ctdatf4 ne 0 then begin
         
        T_eff_MS_f4 = double(T_eff_MS(indat))
        R_star_MS_f4 = double(R_star_MS(indat))
        
    endif
    IF countindf4 NE 0 THEN BEGIN
        lumclassF4 = lumclass(ind)
        nlmF4 = n_elements(lumclassF4)
        indF4_1 = fltarr(nlmF4)
        indF4_2 = indF4_1
        indF4_3 = indF4_1
        indF4_4 = indF4_1
        countindF4_1 = indF4_1
        countindF4_2 = indF4_1
        countindF4_3 = indF4_1
        countindF4_4 = indF4_1
        FOR i=0L,nlmF4-1 DO BEGIN
            popnumber+=1
            countf+=1
            indf4_1[i] =  where(testf4 and params EQ 1, countindf4_1x); index of radius of this stellar population in the val array
            countindf4_1[i] = countindf4_1x
            indf4_2[i] =  where(testf4 and params EQ 2, countindf4_2x); index of temperature of this stellar population in the val array
            countindf4_2[i] = countindf4_2x
            indf4_3[i] =  where(testf4 and params EQ 3, countindf4_3x); index of distance of this stellar population in the val array
            countindf4_3[i] = countindf4_3x
            indf4_4[i] =  where(testf4 and params EQ 4, countindf4_4x); index of the nstars of this stellar population in the val array
            countindf4_4[i] = countindf4_4x
        ENDFOR
    ENDIF
    
    ; Locating the F5 stellar population parameters
    testf5 = strupcase(strmid(key,0,2)) EQ 'F5'
    ind = where(testf5,countindf5)
    ; retrieveing the defaut values from the txt database
    tstf5 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'F5' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstf5,ctdatf5)
    if ctdatf5 ne 0 then begin
         
        T_eff_MS_f5 = double(T_eff_MS(indat))
        R_star_MS_f5 = double(R_star_MS(indat))
        
    endif
    IF countindf5 NE 0 THEN BEGIN
       lumclassF5 = lumclass(ind)
       nlmF5 = n_elements(lumclassF5)
       indF5_1 = fltarr(nlmF5)
       indF5_2 = indF5_1
       indF5_3 = indF5_1
       indF5_4 = indF5_1
       countindF5_1 = indF5_1
       countindF5_2 = indF5_1
       countindF5_3 = indF5_1
       countindF5_4 = indF5_1
       FOR i=0L,nlmF5-1 DO BEGIN
            popnumber+=1
            countf+=1
            indf5_1[i] =  where(testf5 and params EQ 1, countindf5_1x); index of radius of this stellar population in the val array
            countindf5_1[i] = countindf5_1x
            indf5_2[i] =  where(testf5 and params EQ 2, countindf5_2x); index of temperature of this stellar population in the val array
            countindf5_2[i] = countindf5_2x
            indf5_3[i] =  where(testf5 and params EQ 3, countindf5_3x); index of distance of this stellar population in the val array
            countindf5_3[i] = countindf5_3x
            indf5_4[i] =  where(testf5 and params EQ 4, countindf5_4x); index of the nstars of this stellar population in the val array
            countindf5_4[i] = countindf5_4x
        ENDFOR
    ENDIF
    
    ; Locating the F6 stellar population parameters
    testf6 = strupcase(strmid(key,0,2)) EQ 'F6' 
    ind = where(testf6,countindf6)
    ; retrieveing the defaut values from the txt database
    tstf6 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'F6' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstf6,ctdatf6)
    if ctdatf6 ne 0 then begin
         
        T_eff_MS_f6 = double(T_eff_MS(indat))
        R_star_MS_f6 = double(R_star_MS(indat))
        
    endif
    IF countindf6 NE 0 THEN BEGIN
         lumclassF6 = lumclass(ind)
         nlmF6 = n_elements(lumclassF6)
         indF6_1 = fltarr(nlmF6)
         indF6_2 = indF6_1
         indF6_3 = indF6_1
         indF6_4 = indF6_1
         countindF6_1 = indF6_1
         countindF6_2 = indF6_1
         countindF6_3 = indF6_1
         countindF6_4 = indF6_1
         FOR i=0L,nlmF6-1 DO BEGIN   
            popnumber+=1
            countf+=1
            indf6_1[i] =  where(testf6 and params EQ 1, countindf6_1x); index of radius of this stellar population in the val array
            countindf6_1[i] = countindf6_1x
            indf6_2[i] =  where(testf6 and params EQ 2, countindf6_2x); index of temperature of this stellar population in the val array
            countindf6_2[i] = countindf6_2x
            indf6_3[i] =  where(testf6 and params EQ 3, countindf6_3x); index of distance of this stellar population in the val array
            countindf6_3[i] = countindf6_3x
            indf6_4[i] =  where(testf6 and params EQ 4, countindf6_4x); index of the nstars of this stellar population in the val array
            countindf6_4[i] = countindf6_4x
         ENDFOR
     ENDIF
    
    ; Locating the F7 stellar population parameters
    testf7 = strupcase(strmid(key,0,2)) EQ 'F7' 
    ind = where(testf7,countindf7)
    ; retrieveing the defaut values from the txt database
    tstf7 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'F7' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstf7,ctdatf7)
    if ctdatf7 ne 0 then begin
         
        T_eff_MS_f7 = double(T_eff_MS(indat))
        R_star_MS_f7 = double(R_star_MS(indat))
        
    endif
    IF countindf7 NE 0 THEN BEGIN
        umclassF7 = lumclass(ind)
        nlmF7 = n_elements(lumclassF7)
        indF7_1 = fltarr(nlmF7)
        indF7_2 = indF7_1
        indF7_3 = indF7_1
        indF7_4 = indF7_1
        countindF7_1 = indF7_1
        countindF7_2 = indF7_1
        countindF7_3 = indF7_1
        countindF7_4 = indF7_1
        FOR i=0L,nlmF7-1 DO BEGIN
            popnumber+=1
            countf+=1
            indf7_1[i] =  where(testf7 and params EQ 1, countindf7_1x); index of radius of this stellar population in the val array
            countindf7_1[i] = countindf7_1x
            indf7_2[i] =  where(testf7 and params EQ 2, countindf7_2x); index of temperature of this stellar population in the val array
            countindf7_2[i] = countindf7_2x
            indf7_3[i] =  where(testf7 and params EQ 3, countindf7_3x); index of distance of this stellar population in the val array
            countindf7_3[i] = countindf7_3x
            indf7_4[i] =  where(testf7 and params EQ 4, countindf7_4x); index of the nstars of this stellar population in the val array
            countindf7_4[i] = countindf7_4x
        ENDFOR
    ENDIF
    
    ; Locating the F8 stellar population parameters
    testf8 = strupcase(strmid(key,0,2)) EQ 'F8' 
    ind = where(testf8,countindf8)
    ; retrieveing the defaut values from the txt database
    tstf8 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'F8' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstf8,ctdatf8)
    if ctdatf8 ne 0 then begin
         
        T_eff_MS_f8 = double(T_eff_MS(indat))
        R_star_MS_f8 = double(R_star_MS(indat))
        
    endif
    IF countindf8 NE 0 THEN BEGIN
        lumclassF8 = lumclass(ind)
        nlmF8 = n_elements(lumclassF8)
        indF8_1 = fltarr(nlmF8)
        indF8_2 = indF8_1
        indF8_3 = indF8_1
        indF8_4 = indF8_1
        countindF8_1 = indF8_1
        countindF8_2 = indF8_1
        countindF8_3 = indF8_1
        countindF8_4 = indF8_1
        FOR i=0L,nlmF8-1 DO BEGIN
            popnumber+=1
            countf+=1
            indf8_1[i] =  where(testf8 and params EQ 1, countindf8_1x); index of radius of this stellar population in the val array
            countindf8_1[i] = countindf8_1x
            indf8_2[i] =  where(testf8 and params EQ 2, countindf8_2x); index of temperature of this stellar population in the val array
            countindf8_2[i] = countindf8_2x
            indf8_3[i] =  where(testf8 and params EQ 3, countindf8_3x); index of distance of this stellar population in the val array
            countindf8_3[i] = countindf8_3x
            indf8_4[i] =  where(testf8 and params EQ 4, countindf8_4x); index of the nstars of this stellar population in the val array
            countindf8_4[i] = countindf8_4x
        ENDFOR
    ENDIF
    
    ; Locating the F9 stellar population parameters
    testf9 = strupcase(strmid(key,0,2)) EQ 'F9' 
    ind = where(testf9,countindf9)
    ; retrieveing the defaut values from the txt database
    tstf9 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'F9' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstf9,ctdatf9)
    if ctdatf9 ne 0 then begin
         
        T_eff_MS_f9 = double(T_eff_MS(indat))
        R_star_MS_f9 = double(R_star_MS(indat))
        
    endif
    IF countindf9 NE 0 THEN BEGIN
        lumclassF9 = lumclass(ind)
        nlmF9 = n_elements(lumclassF9)
        indF9_1 = fltarr(nlmF9)
        indF9_2 = indF9_1
        indF9_3 = indF9_1
        indF9_4 = indF9_1
        countindF9_1 = indF9_1
        countindF9_2 = indF9_1
        countindF9_3 = indF9_1
        countindF9_4 = indF9_1
        FOR i=0L,nlmF9-1 DO BEGIN 
            popnumber+=1  
            countf+=1
            indf9_1[i] =  where(testf9 and params EQ 1, countindf9_1x); index of radius of this stellar population in the val array
            countindf9_1[i] = countindf9_1x
            indf9_2[i] =  where(testf9 and params EQ 2, countindf9_2x); index of temperature of this stellar population in the val array
            countindf9_2[i] = countindf9_2x
            indf9_3[i] =  where(testf9 and params EQ 3, countindf9_3x); index of distance of this stellar population in the val array
            countindf9_3[i] = countindf9_3x
            indf9_4[i] =  where(testf9 and params EQ 4, countindf9_4x); index of the nstars of this stellar population in the val array
            countindf9_4[i] = countindf9_4x
        ENDFOR
    ENDIF
    
    
    ;======================================================
    
    ; Locating the G0 stellar population parameters 
    testg0 = strupcase(strmid(key,0,2)) EQ 'G0' 
    ind = where(testg0,countindg0)
    
    ; retrieveing the defaut values from the txt database
    tstg0 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'G0' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstg0,ctdatg0)
    if ctdatg0 ne 0 then begin
         
        T_eff_MS_g0 = double(T_eff_MS(indat))
        R_star_MS_g0 = double(R_star_MS(indat))
        
    endif
    
    IF countindg0 NE 0 THEN BEGIN
        lumclassG0 = lumclass(ind)
        nlmG0 = n_elements(lumclassG0)
        indG0_1 = fltarr(nlmG0)
        indG0_2 = indG0_1
        indG0_3 = indG0_1
        indG0_4 = indG0_1
        countindG0_1 = indG0_1
        countindG0_2 = indG0_1
        countindG0_3 = indG0_1
        countindG0_4 = indG0_1
        FOR i=0L,nlmG0-1 DO BEGIN
            popnumber+=1
            countg+=1
            indg0_1[i] =  where(testg0 and params EQ 1, countindg0_1x); index of radius of this stellar population in the val array
            countindg0_1[i] = countindg0_1x
            indg0_2[i] =  where(testg0 and params EQ 2, countindg0_2x); index of temperature of this stellar population in the val array
            countindg0_2[i] = countindg0_2x
            indg0_3[i] =  where(testg0 and params EQ 3, countindg0_3x); index of distance of this stellar population in the val array
            countindg0_3[i] = countindg0_3x
            indg0_4[i] =  where(testg0 and params EQ 4, countindg0_4x); index of the nstars of this stellar population in the val array
            countindg0_4[i] = countindg0_4x
        ENDFOR
    ENDIF
    
    ; Locating the G1 stellar population parameters
    testg1 = strupcase(strmid(key,0,2)) EQ 'G1'  
    ind = where(testg1,countindg1)
    
    ; retrieveing the defaut values from the txt database
    tstg1 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'G1' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstg1,ctdatg1)
    if ctdatg1 ne 0 then begin
         
        T_eff_MS_g1 = double(T_eff_MS(indat))
        R_star_MS_g1 = double(R_star_MS(indat))
        
    endif
    IF countindg1 NE 0 THEN BEGIN
        lumclassG1 = lumclass(ind)
        nlmG1 = n_elements(lumclassG1)
        indG1_1 = fltarr(nlmG1)
        indG1_2 = indG1_1
        indG1_3 = indG1_1
        indG1_4 = indG1_1    
        countindG1_1 = indG1_1
        countindG1_2 = indG1_1
        countindG1_3 = indG1_1
        countindG1_4 = indG1_1
        FOR i=0L,nlmG1-1 DO BEGIN
            popnumber+=1
            countg+=1
            indg1_1[i] =  where(testg1 and params EQ 1, countindg1_1x); index of radius of this stellar population in the val array
            countindg1_1[i] = countindg1_1x
            indg1_2[i] =  where(testg1 and params EQ 2, countindg1_2x); index of temperature of this stellar population in the val array
            countindg1_2[i] = countindg1_2x
            indg1_3[i] =  where(testg1 and params EQ 3, countindg1_3x); index of distance of this stellar population in the val array
            countindg1_3[i] = countindg1_3x
            indg1_4[i] =  where(testg1 and params EQ 4, countindg1_4x); index of the nstars of this stellar population in the val array
            countindg1_4[i] = countindg1_4x
        ENDFOR
    ENDIF
    
    ; Locating the G2 stellar population parameters
    testg2 = strupcase(strmid(key,0,2)) EQ 'G2' 
    ind = where(testg2,countindg2) ;sun-like star
    ; retrieveing the defaut values from the txt database
    tstg2 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'G2' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstg2,ctdatg2)
    if ctdatg2 ne 0 then begin
         
        T_eff_MS_g2 = double(T_eff_MS(indat))
        R_star_MS_g2 = double(R_star_MS(indat))
        
    endif
    
    IF countindg2 NE 0 THEN BEGIN
        lumclassG2 = lumclass(ind)
        nlmG2 = n_elements(lumclassG2)
        indG2_1 = fltarr(nlmG2)
        indG2_2 = indG2_1
        indG2_3 = indG2_1
        indG2_4 = indG2_1
        countindG2_1 = indG2_1
        countindG2_2 = indG2_1
        countindG2_3 = indG2_1
        countindG2_4 = indG2_1
        FOR i=0L,nlmG2-1 DO BEGIN
            popnumber+=1
            countg+=1
            indg2_1[i] =  where(testg2 and params EQ 1, countindg2_1x); index of radius of this stellar population in the val array
            countindg2_1[i] = countindg2_1x
            indg2_2[i] =  where(testg2 and params EQ 2, countindg2_2x); index of temperature of this stellar population in the val array
            countindg2_2[i] = countindg2_2x
            indg2_3[i] =  where(testg2 and params EQ 3, countindg2_3x); index of distance of this stellar population in the val array
            countindg2_3[i] = countindg2_3x
            indg2_4[i] =  where(testg2 and params EQ 4, countindg2_4x); index of the nstars of this stellar population in the val array
            countindg2_4[i] = countindg2_4x
        ENDFOR
    ENDIF
    
    ; Locating the G3 stellar population parameters
    testg3 = strupcase(strmid(key,0,2)) EQ 'G3' 
    ind = where(testg3,countindg3)
    ; retrieveing the defaut values from the txt database
    tstg3 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'G3' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstg3,ctdatg3)
    if ctdatg3 ne 0 then begin
         
        T_eff_MS_g3 = double(T_eff_MS(indat))
        R_star_MS_g3 = double(R_star_MS(indat))
        
    endif
    IF countindg3 NE 0 THEN BEGIN
        lumclassG3 = lumclass(ind)
        nlmG3 = n_elements(lumclassG3)
        indG3_1 = fltarr(nlmG3)
        indG3_2 = indG3_1
        indG3_3 = indG3_1
        indG3_4 = indG3_1   
        countindG3_1 = indG3_1
        countindG3_2 = indG3_1
        countindG3_3 = indG3_1
        countindG3_4 = indG3_1
        FOR i=0L,nlmG3-1 DO BEGIN
            popnumber+=1
            countg+=1
            indg3_1[i] =  where(testg3 and params EQ 1, countindg3_1x); index of radius of this stellar population in the val array
            countindg3_1[i] = countindg3_1x
            indg3_2[i] =  where(testg3 and params EQ 2, countindg3_2x); index of temperature of this stellar population in the val array
            countindg3_2[i] = countindg3_2x
            indg3_3[i] =  where(testg3 and params EQ 3, countindg3_3x); index of distance of this stellar population in the val array
            countindg3_3[i] = countindg3_3x
            indg3_4[i] =  where(testg3 and params EQ 4, countindg3_4x); index of the nstars of this stellar population in the val array
            countindg3_4[i] = countindg3_4x
        ENDFOR
    ENDIF
    
    ; Locating the G4 stellar population parameters
    testg3 = strupcase(strmid(key,0,2)) EQ 'G4' 
    ind = where(testg3,countindg4)
    ; retrieveing the defaut values from the txt database
    tstg4 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'G4' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstg4,ctdatg4)
    if ctdatg4 ne 0 then begin
         
        T_eff_MS_g4 = double(T_eff_MS(indat))
        R_star_MS_g4 = double(R_star_MS(indat))
        
    endif
    IF countindg4 NE 0 THEN BEGIN
        lumclassG4 = lumclass(ind)
        nlmG4 = n_elements(lumclassG4)
        indG4_1 = fltarr(nlmG4)
        indG4_2 = indG4_1
        indG4_3 = indG4_1
        indG4_4 = indG4_1    
        countindG4_1 = indG4_1
        countindG4_2 = indG4_1
        countindG4_3 = indG4_1
        countindG4_4 = indG4_1
        FOR i=0L,nlmG4-1 DO BEGIN
            popnumber+=1
            countg+=1
            indg4_1[i] =  where(testg3 and params EQ 1, countindg4_1x); index of radius of this stellar population in the val array
            countindg4_1[i] = countindg4_1x
            indg4_2[i] =  where(testg3 and params EQ 2, countindg4_2x); index of temperature of this stellar population in the val array
            countindg4_2[i] = countindg4_2x
            indg4_3[i] =  where(testg3 and params EQ 3, countindg4_3x); index of distance of this stellar population in the val array
            countindg4_3[i] = countindg4_3x
            indg4_4[i] =  where(testg3 and params EQ 4, countindg4_4x); index of the nstars of this stellar population in the val array
            countindg4_4[i] = countindg4_4x
        ENDFOR
    ENDIF
    
    ; Locating the G5 stellar population parameters
    testg5 = strupcase(strmid(key,0,2)) EQ 'G5' 
    ind = where(testg5,countindg5)
    ; retrieveing the defaut values from the txt database
    tstg5 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'G5' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstg5,ctdatg5)
    if ctdatg5 ne 0 then begin
         
        T_eff_MS_g5 = double(T_eff_MS(indat))
        R_star_MS_g5 = double(R_star_MS(indat))
        
    endif
    IF countindg5 NE 0 THEN BEGIN
        lumclassG5 = lumclass(ind)
        nlmG5 = n_elements(lumclassG5)
        indG5_1 = fltarr(nlmG5)
        indG5_2 = indG5_1
        indG5_3 = indG5_1
        indG5_4 = indG5_1
        countindG5_1 = indG5_1
        countindG5_2 = indG5_1
        countindG5_3 = indG5_1
        countindG5_4 = indG5_1
        FOR i=0L,nlmG5-1 DO BEGIN
            popnumber+=1
            countg+=1
            indg5_1[i] =  where(testg5 and params EQ 1, countindg5_1x); index of radius of this stellar population in the val array
            countindg5_1[i] = countindg5_1x
            indg5_2[i] =  where(testg5 and params EQ 2, countindg5_2x); index of temperature of this stellar population in the val array
            countindg5_2[i] = countindg5_2x
            indg5_3[i] =  where(testg5 and params EQ 3, countindg5_3x); index of distance of this stellar population in the val array
            countindg5_3[i] = countindg5_3x
            indg5_4[i] =  where(testg5 and params EQ 4, countindg5_4x); index of the nstars of this stellar population in the val array
            countindg5_4[i] = countindg5_4x
       ENDFOR
    ENDIF
    
    ; Locating the G6 stellar population parameters
    testg6 = strupcase(strmid(key,0,2)) EQ 'G6' 
    ind = where(testg6,countindg6)
    ; retrieveing the defaut values from the txt database
    tstg6 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'G6' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstg6,ctdatg6)
    if ctdatg6 ne 0 then begin
         
        T_eff_MS_g6 = double(T_eff_MS(indat))
        R_star_MS_g6 = double(R_star_MS(indat))
        
    endif  
    IF countindg6 NE 0 THEN BEGIN
        lumclassG6 = lumclass(ind)
        nlmG6 = n_elements(lumclassG6) 
        indG6_1 = fltarr(nlmG6)
        indG6_2 = indG6_1
        indG6_3 = indG6_1
        indG6_4 = indG6_1 
        countindG6_1 = indG6_1
        countindG6_2 = indG6_1
        countindG6_3 = indG6_1
        countindG6_4 = indG6_1
        FOR i=0L,nlmG6-1 DO BEGIN     
            popnumber+=1
            countg+=1
            indg6_1[i] =  where(testg6 and params EQ 1, countindg6_1x); index of radius of this stellar population in the val array
            countindg6_1[i] = countindg6_1x
            indg6_2[i] =  where(testg6 and params EQ 2, countindg6_2x); index of temperature of this stellar population in the val array
            countindg6_2[i] = countindg6_2x
            indg6_3[i] =  where(testg6 and params EQ 3, countindg6_3x); index of distance of this stellar population in the val array
            countindg6_3[i] = countindg6_3x
            indg6_4[i] =  where(testg6 and params EQ 4, countindg6_4x); index of the nstars of this stellar population in the val array
            countindg6_4[i] = countindg6_4x
        ENDFOR
    ENDIF
    
    ; Locating the G7 stellar population parameters
    testg7 = strupcase(strmid(key,0,2)) EQ 'G7' 
    ind = where(testg7,countindg7)  
    ; retrieveing the defaut values from the txt database
    tstg7 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'G7' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstg7,ctdatg7)
    if ctdatg7 ne 0 then begin
         
        T_eff_MS_g7 = double(T_eff_MS(indat))
        R_star_MS_g7 = double(R_star_MS(indat))
        
    endif 
    IF countindg7 NE 0 THEN BEGIN
        lumclassG7 = lumclass(ind)
        nlmG7 = n_elements(lumclassG7)
        indG7_1 = fltarr(nlmG7)
        indG7_2 = indG7_1
        indG7_3 = indG7_1
        indG7_4 = indG7_1
        countindG7_1 = indG7_1
        countindG7_2 = indG7_1
        countindG7_3 = indG7_1
        countindG7_4 = indG7_1
        FOR i=0L,nlmG7-1 DO BEGIN 
            popnumber+=1
            countg+=1
            indg7_1[i] =  where(testg7 and params EQ 1, countindg7_1x); index of radius of this stellar population in the val array
            countindg7_1[i] = countindg7_1x
            indg7_2[i] =  where(testg7 and params EQ 2, countindg7_2x); index of temperature of this stellar population in the val array
            countindg7_2[i] = countindg7_2x
            indg7_3[i] =  where(testg7 and params EQ 3, countindg7_3x); index of distance of this stellar population in the val array
            countindg7_3[i] = countindg7_3x
            indg7_4[i] =  where(testg7 and params EQ 4, countindg7_4x); index of the nstars of this stellar population in the val array
            countindg7_4[i] = countindg7_4x
        ENDFOR
    ENDIF
    
    ; Locating the G8 stellar population parameters
    testg8 = strupcase(strmid(key,0,2)) EQ 'G8'     
    ind = where(testg8,countindg8)
    ; retrieveing the defaut values from the txt database
    tstg8 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'G8' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstg8,ctdatg8)
    if ctdatg8 ne 0 then begin
         
        T_eff_MS_g8 = double(T_eff_MS(indat))
        R_star_MS_g8 = double(R_star_MS(indat))
        
    endif
    IF countindg8 NE 0 THEN BEGIN
        lumclassG8 = lumclass(ind)
        nlmG8 = n_elements(lumclassG8)
        indG8_1 = fltarr(nlmG8)
        indG8_2 = indG8_1
        indG8_3 = indG8_1
        indG8_4 = indG8_1    
        countindG8_1 = indG8_1
        countindG8_2 = indG8_1
        countindG8_3 = indG8_1
        countindG8_4 = indG8_1
        FOR i=0L,nlmG8-1 DO BEGIN
            popnumber+=1
            countg+=1
            indg8_1[i] =  where(testg8 and params EQ 1, countindg8_1x); index of radius of this stellar population in the val array
            countindg8_1[i] = countindg8_1x
            indg8_2[i] =  where(testg8 and params EQ 2, countindg8_2x); index of temperature of this stellar population in the val array
            countindg8_2[i] = countindg8_2x
            indg8_3[i] =  where(testg8 and params EQ 3, countindg8_3x); index of distance of this stellar population in the val array
            countindg8_3[i] = countindg8_3x
            indg8_4[i] =  where(testg8 and params EQ 4, countindg8_4x); index of the nstars of this stellar population in the val array
            countindg8_4[i] = countindg8_4x
        ENDFOR
    ENDIF
    
    ; Locating the G9 stellar population parameters
    testg9 = strupcase(strmid(key,0,2)) EQ 'G9' 
    ind = where(testg9,countindg9)  
    ; retrieveing the defaut values from the txt database
    tstg9 = strtrim(strmid(SpecType_MS,0,2),2) EQ 'G9' and strtrim(strmid(SpecType_MS,2,1),2) NE '.'
    indat  = where(tstg9,ctdatg9)
    if ctdatg9 ne 0 then begin
         
        T_eff_MS_g9 = double(T_eff_MS(indat))
        R_star_MS_g9 = double(R_star_MS(indat))
        
    endif     
    IF countindg9 NE 0 THEN BEGIN
        lumclassG9 = lumclass(ind)
        nlmG9 = n_elements(lumclassG9)
        indG9_1 = fltarr(nlmG9)
        indG9_2 = indG9_1
        indG9_3 = indG9_1
        indG9_4 = indG9_1   
        countindG9_1 = indG9_1
        countindG9_2 = indG9_1
        countindG9_3 = indG9_1
        countindG9_4 = indG9_1
        FOR i=0L,nlmG9-1 DO BEGIN
            popnumber+=1   
            countg+=1
            indg9_1[i] =  where(testg9 and params EQ 1, countindg9_1x); index of radius of this stellar population in the val array
            countindg9_1[i] = countindg9_1x
            indg9_2[i] =  where(testg9 and params EQ 2, countindg9_2x); index of temperature of this stellar population in the val array
            countindg9_2[i] = countindg9_2x
            indg9_3[i] =  where(testg9 and params EQ 3, countindg9_3x); index of distance of this stellar population in the val array
            countindg9_3[i] = countindg9_3x
            indg9_4[i] =  where(testg9 and params EQ 4, countindg9_4x); index of the nstars of this stellar population in the val array
            countindg9_4[i] = countindg9_4x
        ENDFOR
    ENDIF
    
     
    comp_pop=replicate(one_pop,popnumber) ; Replication of the default and initialized stellar population structure to create the composite stellar population structure. All the tag values are by default set to te null value
    
    ;stop
    
    ;Filling the tags of the compsite stellar population structure using the indices defined above
    
    FOR i=0L,popnumber-1 DO BEGIN ; Looping over all the structure fields 
   
        IF counto NE 0 THEN BEGIN ; Filling the structure of the O STELLAR POPULATION(S)
                        
            FOR k=0L,counto-1 DO BEGIN 
          
                IF countindo3 NE 0 THEN BEGIN
                    FOR l=0L,nlmO3-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'O3'+lumclasso3(l)+'_stellar_population'
                        IF countindo3_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indo3_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclasso3(l) EQ 'IA+' THEN comp_pop(k+i+l).radius = ;Hypergiants or extremely luminous supergiants
;                             IF lumclasso3(l) EQ 'IA' THEN comp_pop(k+i+l).radius =  ;Luminos supergiants
;                             IF lumclasso3(l) EQ 'IAB' THEN comp_pop(k+i+l).radius = ;Intermediate-size luminous supergiants
;                             IF lumclasso3(l) EQ 'IB' THEN comp_pop(k+i+l).radius =   ;Less luminous supergiants
;                             IF lumclasso3(l) EQ 'II' THEN comp_pop(k+i+l).radius =  ;Bright giants
;                             IF lumclasso3(l) EQ 'III' THEN comp_pop(k+i+l).radius = ;Normal giants
;                             IF lumclasso3(l) EQ 'IV' THEN comp_pop(k+i+l).radius =  ;Subgiants
                            IF lumclasso3(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_o3*rsun2cm;15.0*rsun2cm ;(cm,cgs);Dwarfs: Main-sequence stars
;                             IF lumclasso3(l) EQ 'VI' THEN comp_pop(k+i+l).radius = ;Subdwarfs
;                             IF lumclasso3(l) EQ 'VII' THEN comp_pop(k+i+l).radius = ;White dwarfs   
                        ENDELSE
                        IF countindo3_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indo3_2[l]))(0) ELSE BEGIN       
;                             IF lumclasso3(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso3(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso3(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso3(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso3(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso3(l) EQ 'III' THEN comp_pop(k+i+l).temperature = 
;                             IF lumclasso3(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasso3(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_o3;44.9e3 ;(K)
;                             IF lumclasso3(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso3(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =   
                        ENDELSE      
                        IF countindo3_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indo3_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0 ; should be lower limited in the general procedure because this is the average distance between two stars
                        IF countindo3_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indo3_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR
                    k+=nlmo3
                ENDIF
            
                IF countindo4 NE 0 THEN BEGIN
                    FOR l=0L,nlmO4-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'O4'+lumclasso4(l)+'_stellar_population'
                        IF countindo4_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indo4_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclasso4(l) EQ 'IA+' THEN comp_pop(k+i+l).radius = ;Hypergiants or extremely luminous supergiants
;                             IF lumclasso4(l) EQ 'IA' THEN comp_pop(k+i+l).radius =  ;Luminos supergiants
;                             IF lumclasso4(l) EQ 'IAB' THEN comp_pop(k+i+l).radius = ;Intermediate-size luminous supergiants
;                             IF lumclasso4(l) EQ 'IB' THEN comp_pop(k+i+l).radius    ;Less luminous supergiants
;                             IF lumclasso4(l) EQ 'II' THEN comp_pop(k+i+l).radius =  ;Bright giants
;                             IF lumclasso4(l) EQ 'III' THEN comp_pop(k+i+l).radius = ;Normal giants
;                             IF lumclasso4(l) EQ 'IV' THEN comp_pop(k+i+l).radius =  ;Subgiants
                            IF lumclasso4(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_o4*rsun2cm;13.43*rsun2cm ;(cm,cgs);Dwarfs: Main-sequence stars
;                             IF lumclasso4(l) EQ 'VI' THEN comp_pop(k+i+l).radius = ;Subdwarfs
;                             IF lumclasso4(l) EQ 'VII' THEN comp_pop(k+i+l).radius = ;White dwarfs
                        ENDELSE
                        IF countindo4_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indo4_2[l]))(0) ELSE BEGIN
;                             IF lumclasso4(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso4(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso4(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso4(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso4(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso4(l) EQ 'III' THEN comp_pop(k+i+l).temperature = 
;                             IF lumclasso4(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasso4(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_o4;42.9e3
;                             IF lumclasso4(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso4(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindo4_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indo4_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindo4_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indo4_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1  
                    ENDFOR 
                    k+=nlmo4 
                ENDIF
                
                
                IF countindo5 NE 0 THEN BEGIN
                    FOR l=0L,nlmo5-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'O5'+lumclasso5(l)+'_stellar_population'
                        IF countindo5_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indo5_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclasso5(l) EQ 'IA+' THEN comp_pop(k+i+l).radius = ;Hypergiants or extremely luminous supergiants
;                             IF lumclasso5(l) EQ 'IA' THEN comp_pop(k+i+l).radius =  ;Luminos supergiants
;                             IF lumclasso5(l) EQ 'IAB' THEN comp_pop(k+i+l).radius = ;Intermediate-size luminous supergiants
;                             IF lumclasso5(l) EQ 'IB' THEN comp_pop(k+i+l).radius    ;Less luminous supergiants
;                             IF lumclasso5(l) EQ 'II' THEN comp_pop(k+i+l).radius =  ;Bright giants
;                             IF lumclasso5(l) EQ 'III' THEN comp_pop(k+i+l).radius = ;Normal giants
;                             IF lumclasso5(l) EQ 'IV' THEN comp_pop(k+i+l).radius =  ;Subgiants
                            IF lumclasso5(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_o5*rsun2cm;12*rsun2cm ;(cm,cgs);Dwarfs: Main-sequence stars
;                             IF lumclasso5(l) EQ 'VI' THEN comp_pop(k+i+l).radius = ;Subdwarfs
;                             IF lumclasso5(l) EQ 'VII' THEN comp_pop(k+i+l).radius = ;White dwarfs         
                        ENDELSE
                        IF countindo5_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indo5_2[l]))(0) ELSE BEGIN
;                             IF lumclasso5(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso5(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso5(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso5(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso5(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso5(l) EQ 'III' THEN comp_pop(k+i+l).temperature = 
;                             IF lumclasso5(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasso5(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_o5;41.4e3
;                             IF lumclasso5(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso5(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                            IF countindo5_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indo5_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                            IF countindo5_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indo5_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                            ;K+=1
                    ENDFOR
                    k+=nlmo5         
                ENDIF
        
                
                
                IF countindo6 NE 0 THEN BEGIN
                    FOR l=0L,nlmo6-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'O6'+lumclasso6(l)+'_stellar_population'
                        IF countindo6_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indo6_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclasso6(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso6(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso6(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso6(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso6(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso6(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso6(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclasso6(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_o6*rsun2cm;10.71*rsun2cm
;                             IF lumclasso6(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso6(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE 
                        IF countindo6_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indo6_2[l]))(0) ELSE BEGIN
;                             IF lumclasso6(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso6(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso6(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso6(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso6(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso6(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso6(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasso6(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_o6;39.5e3
;                             IF lumclasso6(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso6(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindo6_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indo6_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindo6_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indo6_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1        
                    ENDFOR
                    k+=nlmo6
                ENDIF
        
                
                IF countindo7 NE 0 THEN BEGIN
                    FOR l=0L,nlmo7-1 DO BEGIN
                        comp_pop(k+l+i).popid = 'O7'+lumclasso7(l)+'_stellar_population'
                        IF countindo7_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indo7_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclasso7(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso7(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso7(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso7(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso7(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso7(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso7(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclasso7(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_o7*rsun2cm;9.52*rsun2cm
;                             IF lumclasso7(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso7(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                            
                        ENDELSE
                        IF countindo7_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indo7_2[l]))(0) ELSE BEGIN
;                             IF lumclasso7(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso7(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso7(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso7(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso7(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso7(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso7(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasso7(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_o7;37.1e3
;                             IF lumclasso7(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso7(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindo7_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indo7_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindo7_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indo7_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR 
                    k+=nlmo7       
                ENDIF
                    
                
                IF countindo8 NE 0 THEN BEGIN
                    FOR l=0L,nlmo8-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'O8'+lumclasso8(l)+'_stellar_population'
                        IF countindo8_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indo8_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclasso8(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso8(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso8(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso8(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso8(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso8(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso8(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclasso8(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_o8*rsun2cm;8.5*rsun2cm
;                             IF lumclasso8(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso8(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindo8_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indo8_2[l]))(0) ELSE BEGIN
;                             IF lumclasso8(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso8(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso8(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso8(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso8(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso8(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso8(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasso8(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_o8*rsun2cm;35.1e3
;                             IF lumclasso8(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso8(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindo8_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indo8_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindo8_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indo8_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1  
                    ENDFOR
                    k+=nlmo8       
                ENDIF
        
                
                IF countindo9 NE 0 THEN BEGIN
                    FOR l=0L,nlmo9-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'O9'+lumclasso9(l)+'_stellar_population'
                          
                        IF countindo9_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indo9_1[l]))(0)*rsun2cm ELSE BEGIN  
;                             IF lumclasso9(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso9(l) EQ 'IA' THEN comp_pop(k+i+l).radius = 
                            IF lumclasso9(l) EQ 'IAB' THEN comp_pop(k+i+l).radius = 20.0*rsun2cm ;taken from Alnitak Aa's data. Even though its spec type is O9.5 (not O9)
;                             IF lumclasso9(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso9(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso9(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso9(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclasso9(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_o9*rsun2cm;7.51*rsun2cm
;                             IF lumclasso9(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso9(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindo9_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indo9_2[l]))(0) ELSE BEGIN
;                             IF lumclasso9(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso9(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
                            IF lumclasso9(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature = 29.5e3 ;taken from Alnitak Aa's data. Even though its spec type is O9.5 (not O9)
;                             IF lumclasso9(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso9(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso9(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso9(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasso9(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_o9*rsun2cm;33.3e3
;                             IF lumclasso9(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso9(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                          
                        IF countindo9_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indo9_3[l]))(0) ELSE comp_pop(k+i+l).distance = 1.0E+00
                        IF countindo9_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indo9_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                           
                    ENDFOR
                    k+=nlmo9
                              
                ENDIF
                    
            ENDFOR
                  
            counto=0L 
    
        i+=k-1
        ENDIF
                    
    ;==============================================================================================
                        
        IF countb NE 0 THEN BEGIN ; Filling the structure of the B STELLAR POPULATION(S)
                    
            FOR k=0L,countb-1 DO BEGIN
                
                IF countindb0 NE 0 THEN BEGIN
                    FOR l=0L,nlmb0-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'B0'+lumclassb0(l)+'_stellar_population'
                        IF countindb0_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb0_1[l]))(0)*rsun2cm ELSE BEGIN
;                              IF lumclassb0(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                              IF lumclassb0(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                              IF lumclassb0(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                              IF lumclassb0(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                              IF lumclassb0(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                              IF lumclassb0(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                              IF lumclassb0(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                             IF lumclassb0(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_b0*rsun2cm;7.16*rsun2cm
;                              IF lumclassb0(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                              IF lumclassb0(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindb0_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb0_2[l]))(0) ELSE BEGIN
;                             IF lumclasb0(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb0(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb0(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb0(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb0(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb0(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb0(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasb0(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_b0;31.4e3
;                             IF lumclasb0(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb0(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindb0_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb0_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindb0_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb0_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1         
                    ENDFOR
                    k+=nlmb0
                ENDIF
                
                IF countindb1 NE 0 THEN BEGIN
                    FOR l=0L,nlmb1-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'B1'+lumclassb1(l)+'_stellar_population'
                        IF countindb1_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb1_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassb1(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb1(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb1(l) EQ 'IAB' THEN comp_pop(k+i+l).radius = 
;                             IF lumclassb1(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb1(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb1(l) EQ 'III' THEN comp_pop(k+i+l).radius =
                            IF lumclassb1(l) EQ 'IV' THEN comp_pop(k+i+l).radius = 7.3*rsun2cm ;taken from Alnitak Ab's data.
                            IF lumclassb1(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_b1*rsun2cm;5.71*rsun2cm
;                             IF lumclassb1(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb1(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindb1_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb1_2[l]))(0) ELSE BEGIN
;                             IF lumclassb1(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassb1(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb1(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassb1(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassb1(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassb1(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
                            IF lumclassb1(l) EQ 'IV' THEN comp_pop(k+i+l).temperature = 29.0e3 ;taken from Alnitak Ab's data.
                            IF lumclassb1(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_b1*rsun2cm;26.0e3
;                             IF lumclassb1(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassb1(l) EQ 'VII' THEN comp_pop(k+i+l).temperature = 
                        ENDELSE
                        IF countindb1_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb1_3[l]))(0) ELSE comp_pop(k+i+l).distance = 1.0E+00
                        IF countindb1_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb1_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlmb1         
                ENDIF
                
                IF countindb2 NE 0 THEN BEGIN
                    FOR l=0L,nlmb2-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'B2'+lumclassb2(l)+'_stellar_population'
                        IF countindb2_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb2_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassb2(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb2(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb2(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb2(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb2(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb2(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb2(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassb2(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_b2*rsun2cm;4.06*rsun2cm
;                             IF lumclassb2(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb2(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindb2_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb2_2[l]))(0) ELSE BEGIN
;                             IF lumclasb2(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb2(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb2(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb2(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb2(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb2(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb2(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasb2(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_b2;20.6e3 
;                             IF lumclasb2(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb2(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindb2_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb2_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindb2_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb2_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlmb2          
                ENDIF
                
                IF countindb3 NE 0 THEN BEGIN
                    FOR l=0L,nlmb3-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'B3'+lumclassb3(l)+'_stellar_population'
                        IF countindb3_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb3_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassb3(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb3(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb3(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb3(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb3(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb3(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb3(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassb3(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_b3*rsun2cm;3.61*rsun2cm
;                             IF lumclassb3(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb3(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindb3_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb3_2[l]))(0) ELSE BEGIN
;                             IF lumclasb3(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb3(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb3(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb3(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb3(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb3(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb3(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasb3(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_b3;17.0e3
;                             IF lumclasb3(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb3(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindb3_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb3_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindb3_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb3_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlmb3          
                ENDIF
            
                IF countindb4 NE 0 THEN BEGIN
                    FOR l=0L,nlmb4-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'B4'+lumclassb4(l)+'_stellar_population'
                        IF countindb4_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb4_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassb4(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb4(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb4(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb4(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb4(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb4(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb4(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassb4(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_b4*rsun2cm;3.46*rsun2cm
;                             IF lumclassb4(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb4(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindb4_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb4_2[l]))(0) ELSE BEGIN
;                             IF lumclasb4(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb4(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb4(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb4(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb4(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb4(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasb4(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_b4;16.4e3
;                             IF lumclasb4(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb4(l) EQ 'VII' THEN comp_pop(k+i+l).temperature = 
                        ENDELSE
                        IF countindb4_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb4_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindb4_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb4_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlmb4       
                ENDIF
                
                
                IF countindb5 NE 0 THEN BEGIN
                    FOR l=0L,nlmb5-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'B5'+lumclassb5(l)+'_stellar_population'
                        IF countindb5_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb5_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassb5(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb5(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb5(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb5(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb5(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb5(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb5(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassb5(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_b5*rsun2cm;3.36*rsun2cm
;                             IF lumclassb5(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb5(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindb5_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb5_2[l]))(0) ELSE BEGIN
;                             IF lumclasb5(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb5(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb5(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb5(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb5(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb5(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb5(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasb5(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_b5;15.7e3 
;                             IF lumclasb5(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb5(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindb5_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb5_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindb5_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb5_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlmb5         
                ENDIF
        
                
                IF countindb6 NE 0 THEN BEGIN
                    FOR l=0L,nlmb6-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'B6'+lumclassb6(l)+'_stellar_population'
                        IF countindb6_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb6_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassb6(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb6(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb6(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb6(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb6(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb6(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb6(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassb6(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_b6*rsun2cm;3.27*rsun2cm
;                             IF lumclassb6(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb6(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindb6_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb6_2[l]))(0) ELSE BEGIN
;                             IF lumclasb6(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature = 
;                             IF lumclasb6(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb6(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb6(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb6(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb6(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb6(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasb6(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_b6;14.5e3 
;                             IF lumclasb6(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb6(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindb6_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb6_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindb6_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb6_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlmb6        
                ENDIF
        
                
                IF countindb7 NE 0 THEN BEGIN
                    FOR l=0L,nlmb7-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'B7'+lumclassb7(l)+'_stellar_population'
                        IF countindb7_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb7_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassb7(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb7(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb7(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb7(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb7(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb7(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb7(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassb7(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_b7*rsun2cm;2.94*rsun2cm
;                             IF lumclassb7(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb7(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindb7_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb7_2[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclasb7(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature = 
;                             IF lumclasb7(l) EQ 'IA' THEN comp_pop(k+i+l).temperature = 
;                             IF lumclasb7(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb7(l) EQ 'IB' THEN comp_pop(k+i+l).temperature = 
;                             IF lumclasb7(l) EQ 'II' THEN comp_pop(k+i+l).temperature =  
;                             IF lumclasb7(l) EQ 'III' THEN comp_pop(k+i+l).temperature = 
;                             IF lumclasb7(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasb7(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_b7;14.0e3   
;                             IF lumclasb7(l) EQ 'VI' THEN comp_pop(k+i+l).temperature = 
;                             IF lumclasb7(l) EQ 'VII' THEN comp_pop(k+i+l).temperature = 
                        ENDELSE
                        IF countindb7_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb7_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindb7_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb7_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1  
                    ENDFOR
                    k+=nlmb7        
                ENDIF
                    
                
                IF countindb8 NE 0 THEN BEGIN
                    FOR l=0L,nlmb7-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'B8'+lumclassb8(l)+'_stellar_population'
                        IF countindb8_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb8_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassb8(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb9(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb8(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb8(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb8(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb8(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb8(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassb8(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_b8*rsun2cm;2.86*rsun2cm
;                             IF lumclassb8(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb8(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindb8_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb8_2[l]))(0) ELSE BEGIN
;                             IF lumclasb8(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb8(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb8(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb8(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb8(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb8(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb8(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasb8(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_b8;12.3e3 
;                             IF lumclasb8(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb8(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindb8_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb8_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindb8_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb8_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                    ;K+=1 
                    ENDFOR  
                    k+=nlmb8      
                ENDIF
        
                
                IF countindb9 NE 0 THEN BEGIN
                    FOR l=0L,nlmb9-1 DO BEGIN
                    comp_pop(k+i+l).popid = 'B9'+lumclassb9(l)+'_stellar_population'
                    IF countindb9_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb9_1[l]))(0)*rsun2cm ELSE BEGIN
;                         IF lumclassb9(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                         IF lumclassb9(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                         IF lumclassb9(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                         IF lumclassb9(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                         IF lumclassb9(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                         IF lumclassb9(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                         IF lumclassb9(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                        IF lumclassb9(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_b9*rsun2cm;2.49*rsun2cm
;                         IF lumclassb9(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                         IF lumclassb9(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                    ENDELSE
                    IF countindb9_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb9_2[l]))(0) ELSE BEGIN
;                         IF lumclasb9(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                         IF lumclasb9(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                         IF lumclasb9(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                         IF lumclasb9(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                         IF lumclasb9(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                         IF lumclasb9(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                         IF lumclasb9(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                        IF lumclasb9(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_b9;10.7e3 
;                         IF lumclasb9(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                         IF lumclasb9(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                    ENDELSE
                    IF countindb9_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb9_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                    IF countindb9_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb9_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                    ;K+=1 
                    ENDFOR
                    k+=nlmb9         
                ENDIF
                        
                    
            ENDFOR
                    
            countb=0. 
  
        i+=k-1
        ENDIF 
                                               
    ;==============================================================================================
                        
        IF counta NE 0 THEN BEGIN ; Filling the structure of the A STELLAR POPULATION(S)
                    
            FOR k=0L+i,counta-1+i DO BEGIN
                
                IF countinda0 NE 0 THEN BEGIN
                    FOR l=0L,nlma0-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'A0'+lumclassa0(l)+'_stellar_population'
                        IF countinda0_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda0_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassa0(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa0(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa0(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa0(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa0(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa0(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa0(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassa0(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_a0*rsun2cm;2.193*rsun2cm
;                             IF lumclassa0(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa0(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countinda0_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda0_2[l]))(0) ELSE BEGIN
;                             IF lumclasa0(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa0(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa0(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa0(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa0(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa0(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa0(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasa0(l) EQ 'V' THEN comp_pop(k+i+l).temperature =T_eff_MS_a0; 9.7e3
;                             IF lumclasa0(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa0(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countinda0_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda0_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countinda0_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda0_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR 
                    k+=nlma0        
                ENDIF
                
                
                
                IF countinda1 NE 0 THEN BEGIN
                    FOR l=0L,nlma1-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'A1'+lumclassa1(l)+'_stellar_population'
                        IF countinda1_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda1_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassa1(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa1(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa1(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa1(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa1(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa1(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa1(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassa1(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_a1*rsun2cm;2.136*rsun2cm
;                             IF lumclassa1(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa1(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countinda1_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda1_2[l]))(0) ELSE BEGIN
;                             IF lumclasa1(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa1(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa1(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa1(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa1(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa1(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa1(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasa1(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_a1;9.3e3
;                             IF lumclasa1(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa1(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countinda1_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda1_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countinda1_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda1_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                       ; K+=1 
                    ENDFOR 
                    k+=nlma1      
                ENDIF
                
                IF countinda2 NE 0 THEN BEGIN
                    FOR l=0L,nlma2-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'A2'+lumclassa2(l)+'_stellar_population'
                        IF countinda2_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda2_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassa2(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa2(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa2(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa2(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa2(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa2(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa2(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassa2(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_a2*rsun2cm;2.117*rsun2cm
;                             IF lumclassa2(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa2(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countinda2_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda2_2[l]))(0) ELSE BEGIN
;                             IF lumclasa2(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa2(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa2(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa2(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa2(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa2(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa2(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasa2(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_a2;8.8e3
;                             IF lumclasa2(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa2(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countinda2_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda2_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countinda2_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda2_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlma2        
                ENDIF
                
                
                
                IF countinda3 NE 0 THEN BEGIN
                    FOR l=0L,nlma3-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'A3'+lumclassa3(l)+'_stellar_population'
                        IF countinda3_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda3_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassa3(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa3(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa3(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa3(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa3(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa3(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa3(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassa3(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_a3*rsun2cm;1.861*rsun2cm
;                             IF lumclassa3(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa3(l) EQ 'VII' THEN comp_pop(k+i+l).radius = 
                        ENDELSE
                        IF countinda3_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda3_2[l]))(0) ELSE BEGIN
;                             IF lumclasa3(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa3(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa3(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa3(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa3(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa3(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa3(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasa3(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_a3;8.6e3
;                             IF lumclasa3(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa3(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countinda3_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda3_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countinda3_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda3_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlma3          
                ENDIF
            
                IF countinda4 NE 0 THEN BEGIN
                    FOR l=0L,nlma4-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'A4'+lumclassa4(l)+'_stellar_population'
                        IF countinda4_1 NE 0 THEN comp_pop(k+i+l).radius = (val(inda4_1))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassa4(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa4(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa4(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa4(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa4(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa4(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa4(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassa4(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_a4*rsun2cm;1.794*rsun2cm
;                             IF lumclassa4(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa4(l) EQ 'VII' THEN comp_pop(k+i+l).radius = 
                        ENDELSE
                        IF countinda4_2 NE 0 THEN comp_pop(k+i+l).temperature = (val(inda4_2))(0) ELSE BEGIN
;                             IF lumclasa4(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa4(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa4(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa4(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa4(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa4(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa4(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasa4(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_a4;8.25e3
;                             IF lumclasa4(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa4(l) EQ 'VII' THEN comp_pop(k+i+l).temperature = 
                        ENDELSE
                        IF countinda4_3 NE 0 THEN comp_pop(k+i+l).distance = (val(inda4_3))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countinda4_4 NE 0 THEN comp_pop(k+i+l).nstars = (val(inda4_4))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlma4         
                ENDIF
                
                
                IF countinda5 NE 0 THEN BEGIN
                    FOR l=0L,nlma5-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'A5'+lumclassa5(l)+'_stellar_population'
                        IF countinda5_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda5_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassa5(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa5(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa5(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa5(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa5(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa5(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa5(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassa5(l) EQ 'V' THEN omp_pop(k+i+l).radius = R_star_MS_a5*rsun2cm;1.785*rsun2cm
;                             IF lumclassa5(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa5(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countinda5_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda5_2[l]))(0) ELSE BEGIN
;                             IF lumclasa5(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa5(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa5(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa5(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa5(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa5(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa5(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasa5(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_a5;8.1e3
;                             IF lumclasa5(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa5(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countinda5_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda5_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countinda5_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda5_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1  
                    ENDFOR   
                    k+=nlma5     
                ENDIF
        
                
                IF countinda6 NE 0 THEN BEGIN
                    FOR l=0L,nlma6-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'A6'+lumclassa6(l)+'_stellar_population'
                        IF countinda6_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda6_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassa6(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa6(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa6(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa6(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa6(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa6(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa6(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassa6(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_a6*rsun2cm;1.775*rsun2cm
;                             IF lumclassa6(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa6(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countinda6_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda6_2[l]))(0) ELSE BEGIN
;                             IF lumclasa6(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa6(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa6(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa6(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa6(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa6(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa6(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasa6(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_a6;7.91e3 
;                             IF lumclasa6(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa6(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countinda6_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda6_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countinda6_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda6_5[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR 
                    k+=nlma6       
                ENDIF
        
                
                IF countinda7 NE 0 THEN BEGIN
                    FOR l=0L,nlma7-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'A7'+lumclassa7(l)+'_stellar_population'
                        IF countinda7_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda7_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassa7(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa7(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa7(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa7(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa7(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa7(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa7(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassa7(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_a7*rsun2cm;1.75*rsun2cm
;                             IF lumclassa7(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa7(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                         ENDELSE
                        IF countinda7_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda7_2[l]))(0) ELSE BEGIN
;                             IF lumclasa7(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa7(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa7(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa7(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa7(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa7(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasa7(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_a7;7.76e3
;                             IF lumclasa7(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa7(l) EQ 'VII' THEN comp_pop(k+i+l).temperature = 
                        ENDELSE
                        IF countinda7_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda7_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countinda7_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda7_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR 
                    k+=nlma7       
                ENDIF
                    
                
                IF countinda8 NE 0 THEN BEGIN
                    FOR l=0L,nlma8-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'A8'+lumclassa8(l)+'_stellar_population'
                        IF countinda8_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda8_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassa8(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa8(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa8(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa8(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa8(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa8(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa8(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassa8(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_a8*rsun2cm;1.747*rsun2cm
;                             IF lumclassa8(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa8(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countinda8_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda8_2[l]))(0) ELSE BEGIN
;                             IF lumclasa8(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa8(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa8(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa8(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa8(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa8(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa8(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasa8(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_a8;7.590e3
;                             IF lumclasa8(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa8(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countinda8_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda8_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countinda8_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda8_4[l]))(0) ELSE comp_pop(k+i+l).nstars =1; stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR 
                    k+=nlma8       
                ENDIF
        
                
                IF countinda9 NE 0 THEN BEGIN
                    FOR l=0L,nlma9-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'A9'+lumclassa9(l)+'_stellar_population'
                        IF countinda9_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda9_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassa9(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa9(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa9(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa9(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa9(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa9(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa9(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassa9(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_a9*rsun2cm;1.747*rsun2cm
;                             IF lumclassa9(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa9(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countinda9_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda9_2[l]))(0) ELSE begin
;                             IF lumclasa9(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa9(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa9(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa9(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa9(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa9(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa9(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasa9(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_a9;7.4e3 
;                             IF lumclasa9(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa9(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countinda9_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda9_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countinda9_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda9_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlma9       
                ENDIF
                        
                        
            ENDFOR
                        
            counta=0. 
        i+=k-1
        ENDIF
          
                            
    ;==============================================================================================    
                        
                    
        IF countf NE 0 THEN BEGIN ; Filling the structure of the F STELLAR POPULATION(S)
                 
            FOR k=0L+i,countf-1+i DO BEGIN
                
                 IF countindf0 NE 0 THEN BEGIN
                    FOR l=0L,nlmaf0-1 DO BEGIN
                    comp_pop(k+i+l).popid = 'F0'+lumclassf0(l)+'_stellar_population'
                        IF countindf0_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf0_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassf0(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf0(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf0(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf0(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf0(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf0(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf0(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassf0(l) EQ 'V' THEN omp_pop(k+i+l).radius = R_star_MS_f0*rsun2cm;1.728*rsun2cm
;                             IF lumclassf0(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf0(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindf0_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf0_2[l]))(0) ELSE BEGIN
;                             IF lumclassf0(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf0(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf0(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf0(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf0(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf0(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf0(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassf0(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_f0;7.22e3
;                             IF lumclassf0(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf0(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindf0_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf0_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindf0_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf0_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR 
                    k+=nlmf0      
                ENDIF
                
                
                
                 IF countindf1 NE 0 THEN BEGIN
                    FOR l=0L,nlmaf1-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'F1'+lumclassf1(l)+'_stellar_population'
                        IF countindf1_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf1_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassf1(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf1(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf1(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf1(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf1(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf1(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf1(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassf1(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_f1*rsun2cm;1.679*rsun2cm
;                             IF lumclassf1(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf1(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindf1_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf1_2[l]))(0) ELSE BEGIN
;                             IF lumclassf1(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf1(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf1(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf1(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf1(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf1(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf1(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassf1(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_f1;7.02e3
;                             IF lumclassf1(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf1(l) EQ 'VIII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindf1_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf1_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindf1_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf1_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1  
                    ENDFOR
                    k+=nlmf1        
                ENDIF

                IF countindf2 NE 0 THEN BEGIN
                    FOR l=0L,nlmaf2-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'F2'+lumclassf2(l)+'_stellar_population'
                        IF countindf2_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf2_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassf2(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf2(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf2(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf2(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf2(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf2(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf2(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassf2(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_f2*rsun2cm;1.622*rsun2cm
;                             IF lumclassf2(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf2(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindf2_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf2_2[l]))(0) ELSE BEGIN
;                             IF lumclassf2(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf2(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf2(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf2(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf2(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf2(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf2(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassf2(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_f2;6.820e3
;                             IF lumclassf2(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf2(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindf2_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf2_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindf2_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf2_4[l]))(0) ELSE comp_pop(k+i+l).nstars =  1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR 
                    k+=nlmf2        
                ENDIF
                
                
                
                IF countindf3 NE 0 THEN BEGIN
                    FOR l=0L,nlmaf3-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'F3'+lumclassf3(l)+'_stellar_population'
                        IF countindf3_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf3_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassf3(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf3(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf3(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf3(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf3(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf3(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf3(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassf3(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_f3*rsun2cm;1.578*rsun2cm
;                             IF lumclassf3(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf3(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindf3_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf3_2[l]))(0) ELSE BEGIN
;                             IF lumclassf3(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf3(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf3(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf3(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf3(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf3(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf3(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassf3(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_f3;6.75e3
;                             IF lumclassf3(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf3(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindf3_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf3_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindf3_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf3_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR
                    k+=nlmf3         
                ENDIF
            
                IF countindf4 NE 0 THEN BEGIN
                    FOR l=0L,nlmaf4-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'F4'+lumclassf4(l)+'_stellar_population'
                        IF countindf4_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf4_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassf4(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf4(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf4(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf4(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf4(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf4(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf4(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassf4(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_f4*rsun2cm;1.533*rsun2cm
;                             IF lumclassf4(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf4(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindf4_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf4_2[l]))(0) ELSE BEGIN
;                             IF lumclassf4(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf4(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf4(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf4(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf4(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf4(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf4(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassf4(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_f4;6.67e3
;                             IF lumclassf4(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf4(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindf4_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf4_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindf4_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf4_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlmf4          
                ENDIF
                
                
                IF countindf5 NE 0 THEN BEGIN
                    FOR l=0L,nlmaf5-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'F5'+lumclassf5(l)+'_stellar_population'
                        IF countindf5_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf5_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassf5(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf5(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf5(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf5(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf5(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf5(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf5(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassf5(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_f5*rsun2cm;1.473*rsun2cm
;                             IF lumclassf5(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf5(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindf5_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf5_2[l]))(0) ELSE BEGIN
;                             IF lumclassf5(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf5(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf5(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf5(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf5(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf5(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf5(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassf5(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_f5;6.55e3
;                             IF lumclassf5(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf5(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindf5_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf5_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindf5_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf5_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                    ;K+=1
                    ENDFOR
                    k+=nlmf5          
                ENDIF
        
                
                IF countindf6 NE 0 THEN BEGIN
                    FOR l=0L,nlmaf6-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'F6'+lumclassf6(l)+'_stellar_population'
                        IF countindf6_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf6_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassf6(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf6(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf6(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf6(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf6(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf6(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf6(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassf6(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_f6*rsun2cm;1.359*rsun2cm
;                             IF lumclassf6(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf6(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                         ENDELSE
                        IF countindf6_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf6_2[l]))(0) ELSE BEGIN
;                             IF lumclassf6(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf6(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf6(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf6(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf6(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf6(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf6(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassf6(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_f6;6.35e3
;                             IF lumclassf6(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf6(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindf6_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf6_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindf6_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf6_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlmf6           
                ENDIF
        
                
                IF countindf7 NE 0 THEN BEGIN
                    FOR l=0L,nlmaf7-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'F7'+lumclassf7(l)+'_stellar_population'
                        IF countindf7_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf7_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassf7(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf7(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf7(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf7(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf7(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf7(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf7(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassf7(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_f7*rsun2cm;1.324*rsun2cm
;                             IF lumclassf7(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf7(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindf7_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf7_2[l]))(0) ELSE BEGIN
;                             IF lumclassf7(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf7(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf7(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf7(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf7(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf7(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf7(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassf7(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_f7;6.28e3
;                             IF lumclassf7(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf7(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindf7_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf7_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindf7_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf7_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                    ;K+=1 
                    ENDFOR
                    k+=nlmf7          
                ENDIF
                    
                
                IF countindf8 NE 0 THEN BEGIN
                    FOR l=0L,nlmaf8-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'F8'+lumclassf8(l)+'_stellar_population'
                        IF countindf8_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf8_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassf8(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf8(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf8(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf8(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf8(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf8(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf8(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassf8(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_f8*rsun2cm;1.221*rsun2cm
;                             IF lumclassf8(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf8(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindf8_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf8_2[l]))(0) ELSE BEGIN
;                             IF lumclassf8(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf8(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf8(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf8(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf8(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf8(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf8(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassf8(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_f8;6.18e3
;                             IF lumclassf8(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf8(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =   
                        ENDELSE
                        IF countindf8_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf8_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindf8_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf8_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                    ;K+=1
                    ENDFOR
                    k+=nlmf8           
                ENDIF
        
                
                IF countindf9 NE 0 THEN BEGIN
                    FOR l=0L,nlmaf9-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'F9'+lumclassf9(l)+'_stellar_population'
                        IF countindf9_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf9_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassf9(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf9(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf9(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf9(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf9(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf9(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf9(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassf9(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_f9*rsun2cm;1.167*rsun2cm
;                             IF lumclassf9(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf9(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindf9_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf9_2[l]))(0) ELSE BEGIN
;                             IF lumclassf9(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf9(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf9(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf9(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf9(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf9(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf9(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassf9(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_f9;6.05e3
;                             IF lumclassf9(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf9(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =    
                        ENDELSE
                        IF countindf9_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf9_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindf9_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf9_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                    ;K+=1 
                    ENDFOR
                    k+=nlmf9          
                ENDIF
                                    
                                        
            ENDFOR
                                                        
            countf=0.  
        i+=k-1
        ENDIF
         
                                                                    
    ;============================================================================================== 
                            
        IF countg NE 0 THEN BEGIN ; Filling the structure of the G STELLAR POPULATION(S)
                    
            FOR k=0L+i,countg-1+i DO BEGIN
                
                IF countindg0 NE 0 THEN BEGIN
                    FOR l=0L,nlmg0-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'G0'+lumclassg0(l)+'_stellar_population'
                        IF countindg0_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg0_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassg0(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg0(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg0(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg0(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg0(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg0(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg0(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassg0(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_g0*rsun2cm;1.1*rsun2cm
;                             IF lumclassg0(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg0(l) EQ 'VII' THEN comp_pop(k+i+l).radius =

                        ENDELSE
                        IF countindg0_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg0_2[l]))(0) ELSE BEGIN
;                             IF lumclassfg0(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg0(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg0(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg0(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg0(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg0(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg0(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassfg0(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_g0;5.93e3
;                             IF lumclassfg0(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg0(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindg0_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg0_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindg0_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg0_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR  
                    k+=nlmg0      
                ENDIF
                
                
                
                IF countindg1 NE 0 THEN BEGIN
                    FOR l=0L,nlmg1-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'G1'+lumclassg1(l)+'_stellar_population'
                        IF countindg1_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg1_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassg1(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg1(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg1(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg1(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg1(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg1(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg1(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassg1(l) EQ 'V' THEN omp_pop(k+i+l).radius = R_star_MS_g1*rsun2cm;1.06*rsun2cm
;                             IF lumclassg1(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg1(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindg1_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg1_2[l]))(0) ELSE begin
;                             IF lumclassfg1(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg1(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg1(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg1(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg1(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg1(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg1(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassfg1(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_g1;5.86e3
;                             IF lumclassfg1(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg1(l) EQ 'VII' THEN comp_pop(k+i+l).temperature = 
                        ENDELSE
                        IF countindg1_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg1_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindg1_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg1_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                    ;K+=1 
                    ENDFOR
                    k+=nlmg1
                ENDIF
                
                
                
                IF countindg2 NE 0 THEN BEGIN
                    FOR l=0L,nlmg2-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'G2'+lumclassg2(l)+'_stellar_population'
                        IF countindg2_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg2_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassg2(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg2(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg2(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg2(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg2(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg2(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg2(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassg2(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_g2*rsun2cm;1.012*rsun2cm
;                             IF lumclassg2(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg2(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindg2_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg2_2[l]))(0) ELSE BEGIN
;                             IF lumclassfg2(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg2(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg2(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg2(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg2(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg2(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg2(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassfg2(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_g2;5.77e3
;                             IF lumclassfg2(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg2(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindg2_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg2_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindg2_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg2_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR
                    k+=nlmg2         
                ENDIF
                
                
                
                IF countindg3 NE 0 THEN BEGIN
                    FOR l=0L,nlmg3-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'G3'+lumclassg3(l)+'_stellar_population'
                        IF countindg3_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg3_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassg3(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg3(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg3(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg3(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg3(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg3(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg3(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassg3(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_g3*rsun2cm;1.002*rsun2cm
;                             IF lumclassg3(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg3(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindg3_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg3_2[l]))(0) ELSE BEGIN
;                             IF lumclassfg3(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg3(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg3(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg3(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg3(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg3(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg3(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassfg3(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_g3;5.72e3
;                             IF lumclassfg3(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg3(l) EQ 'VII' THEN comp_pop(k+i+l).temperature 
                        ENDELSE
                        IF countindg3_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg3_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindg3_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg3_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR 
                    k+=nlmg3
                ENDIF
            
                IF countindg4 NE 0 THEN BEGIN
                    FOR l=0L,nlmg4-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'G4'+lumclassg4(l)+'_stellar_population'
                        IF countindg4_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg4_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassg4(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg4(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg4(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg4(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg4(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg4(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg4(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassg4(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_g4*rsun2cm;0.991*rsun2cm
;                             IF lumclassg4(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg4(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindg4_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg4_2[l]))(0) ELSE BEGIN
;                             IF lumclassfg4(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg4(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg4(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg4(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg4(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg4(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg4(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassfg4(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_g4;5.68e3
;                             IF lumclassfg4(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg4(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindg4_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg4_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindg4_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg4_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlmg4 
                ENDIF
                
                
                IF countindg5 NE 0 THEN BEGIN
                    FOR l=0L,nlmg5-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'G5'+lumclassg5(l)+'_stellar_population'
                        IF countindg5_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg5_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassg5(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg5(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg5(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg5(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg5(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg5(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg5(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassg5(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_g5*rsun2cm;0.977*rsun2cm
;                             IF lumclassg5(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg5(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindg5_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg5_2[l]))(0) ELSE BEGIn
;                             IF lumclassfg5(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg5(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg5(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg5(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg5(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg5(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg5(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassfg5(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_g5;5.66e3
;                             IF lumclassfg5(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg5(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindg5_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg5_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindg5_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg5_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR 
                    k+=nlmg5       
                ENDIF
        
                
                IF countindg6 NE 0 THEN BEGIN
                    FOR l=0L,nlmg6-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'G6'+lumclassg6(l)+'_stellar_population'
                        IF countindg6_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg6_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassg6(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg6(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg6(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg6(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg6(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg6(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg6(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassg6(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_g6*rsun2cm;0.949*rsun2cm
;                             IF lumclassg6(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg6(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                         ENDELSE
                        IF countindg6_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg6_2[l]))(0) ELSE BEGIN
;                             IF lumclassfg6(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg6(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg6(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg6(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg6(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg6(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg6(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassfg6(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_g6;5.6e3
;                             IF lumclassfg6(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg6(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindg6_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg6_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindg6_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg6_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR
                    k+=nlmg6         
                ENDIF
        
                
                IF countindg7 NE 0 THEN BEGIN
                    FOR l=0L,nlmg7-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'G7'+lumclassg7(l)+'_stellar_population'
                        IF countindg7_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg7_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassg7(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg7(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg7(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg7(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg7(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg7(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg7(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassg7(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_g7*rsun2cm;0.927*rsun2cm
;                             IF lumclassg7(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg7(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindg7_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg7_2[l]))(0) ELSE BEGIN
;                             IF lumclassfg7(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg7(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg7(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg7(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg7(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg7(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg7(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassfg7(l) EQ 'V' THEN ccomp_pop(k+i+l).temperature = T_eff_MS_g7;5.55e3
;                             IF lumclassfg7(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg7(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindg7_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg7_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindg7_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg7_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR 
                    k+=nlmg7     
                ENDIF
                    
                
                IF countindg8 NE 0 THEN BEGIN
                    FOR l=0L,nlmg8-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'G8'+lumclassg8(l)+'_stellar_population'
                        IF countindg8_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg8_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassg8(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg8(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg8(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg8(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg8(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg8(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg8(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassg8(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_g8*rsun2cm;0.914*rsun2cm
;                             IF lumclassg8(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg8(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindg8_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg8_2[l]))(0) ELSE BEGIN
;                             IF lumclassfg8(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg8(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg8(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg8(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg8(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg8(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg8(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassfg8(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_g8;5.48e3
;                             IF lumclassfg8(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg8(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindg8_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg8_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindg8_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg8_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR
                    k+=nlmg8  
                ENDIF
        
                
                IF countindg9 NE 0 THEN BEGIN
                    FOR l=0L,nlmg9-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'G9'+lumclassg9(l)+'_stellar_population'
                        IF countindg9_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg9_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclassg9(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg9(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg9(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg9(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg9(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg9(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg9(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassg9(l) EQ 'V' THEN comp_pop(k+i+l).radius = R_star_MS_g9*rsun2cm;0.853*rsun2cm
;                             IF lumclassg9(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg9(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindg9_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg9_2[l]))(0) ELSE BEGIN
;                             IF lumclassfg9(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg9(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg9(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg9(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg9(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg9(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg9(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassfg9(l) EQ 'V' THEN comp_pop(k+i+l).temperature = T_eff_MS_g9;5.38e3
;                             IF lumclassfg9(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg9(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindg9_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg9_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindg9_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg9_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance 
                        ;K+=1 
                    ENDFOR 
                    k+=nlmg9 
                ENDIF
           
            ENDFOR
    
            countg=0.  
        i+=k-1
        ENDIF 
 
    
    ;==============================================================================================    
    
    ENDFOR

st=((*!dustem_params).isrf)

c2a = 3e18 ;speed of light in ansgtroms/s (because of the Astron's PLANCK function)
pc2cm = 3.086e18 ;cm (cgs)

wave_angstrom = st.lambisrf*1.e4 ;mic to Angstrom (Astron Planck's function uses wavelengths in Angstroms)

stellar_component=fltarr(n_elements(st)) ; array of zeros to contain the new ISRF values. 

FOR i=0L,n_elements(comp_pop.popid)-1 DO BEGIN ; Looping over all the stellar populations
     
    omega =  ((comp_pop.radius)[i]/((comp_pop.distance)[i]*pc2cm))^2 ; Dilution factor of a stellar population
        
    Inu = planck(wave_angstrom,(comp_pop.temperature)[i])*(wave_angstrom)^2/c2a ; ergs/cm2/s/Hz/sr
    
;     ;THIS PART IS ONLY FOR ORION. 
;     ;IT SHOULD NOT BE PROVIDED IN THE RELEASE 
;     if isa(!dustem_current) then begin
;     
;         idff = where(tag_names(*!dustem_plugin) EQ 'FREEFREE',ct_ff)
;     
;         if ct_ff ne 0 then begin
;     
;         ;look for freefree temperature in the pd vector (sysvar)
;         ;we need an index
;     
;         id_fftmp = where(strupcase(strmid((*(*!dustem_fit).param_descs),14)) EQ 'FREEFREE_1',ct_fftmp)
;         if ct_fftmp ne 0 then Te = ((*(*!dustem_fit).current_param_values)[id_fftmp])[0]*(((*(*!dustem_fit).param_init_values))[id_fftmp])[0]
;            ; test if Te is correct
;     
;         Beta2 = 2.e-10*(Te)^(-3/4) ;cm^3/s-1
;         Rs_p3 = 1.1355d+57 ;Rs^3 for orion nebula
;         nH_stromgren = sqrt(Rs_p3*4*!pi*Beta2/(3*(!const.sigma)*1.0d-04*((comp_pop.temperature)[i])^4*!pi))
;     
;     
;         Inu *= exp(((*!dustem_current).ext.ext_tot)*(-nh_stromgren)*4/3*Rs_p3^(1/3)/1.0d21)
;     
;            
;         endif
;     
;     ENDIF
    
    
    If !dustem_dim and isa(!dustem_current) then Inu *= exp(((*!dustem_current).ext.ext_tot)*(-(*!dustem_HCD))/1.0d21)
    
    
    stellar_component=stellar_component+(comp_pop.nstars)[i]*omega*Inu 
    

ENDFOR
out = stellar_component
;============This block creates a composite (9V) stellar population structure for when the function isn't used as a plugin=================== 
ENDIF ELSE BEGIN 
    
    popnumber = 5.
    comp_pop = replicate(one_pop,popnumber)
    stellar_density = 0.14 ;stars/pc^3
    
    ;###BY DEFAULT ALL STELLAR POPULATIONS ARE ON THE MS###
    ;BECAUSE LESS MASSIVE (COLDER) STARS ARE MORE ABUNDANT, THEY WILL BE CHOSEN TO BUILD THE COMPOSITE STELLAR STRUCTURE
    ;THIS MEANS THAT THE CHOSEN SPECTRAL TYPE IS 9V (MAIN SEQUENCE)

    ;CHOSEN STELLAR POPULATIONS
    ;O9V
    ;B9V
    ;A9V
    ;F9V
    ;G9V
    
    comp_pop(0).popid = 'O9V_stellar_population'
    comp_pop(0).radius = 7.51*rsun2cm 
    comp_pop(0).temperature = 33.3e3
    comp_pop(0).distance = 10.0
    comp_pop(0).nstars = stellar_density*(4.*!pi/3)*comp_pop(0).distance
    
    comp_pop(1).popid = 'B9V_stellar_population'
    comp_pop(1).radius = 2.49*rsun2cm  
    comp_pop(1).temperature = 10.7e3 
    comp_pop(1).distance = 10.0
    comp_pop(1).nstars = stellar_density*(4.*!pi/3)*comp_pop(1).distance
    
    comp_pop(2).popid = 'A9V_stellar_population'
    comp_pop(2).radius = 1.747*rsun2cm
    comp_pop(2).temperature = 7.4e3
    comp_pop(2).distance = 10.0
    comp_pop(2).nstars = stellar_density*(4.*!pi/3)*comp_pop(2).distance
    
    comp_pop(3).popid = 'F9V_stellar_population'
    comp_pop(3).radius = 1.167*rsun2cm
    comp_pop(3).temperature = 6.05e3
    comp_pop(3).distance = 10.0
    comp_pop(3).nstars = stellar_density*(4.*!pi/3)*comp_pop(3).distance
    
    comp_pop(4).popid = 'G9V_stellar_population'
    comp_pop(4).radius = 0.853*rsun2cm 
    comp_pop(4).temperature = 5.38e3
    comp_pop(4).distance = 10.0
    comp_pop(4).nstars = stellar_density*(4.*!pi/3)*comp_pop(4).distance
    
    st=((*!dustem_params).isrf)

    c2a = 3e18 ;speed of light in ansgtroms/s (because of the Astron's PLANCK function)
    pc2cm = 3.086e18 ;cm (cgs)

    wave_angstrom = st.lambisrf*1.e4 ;mic to Angstrom (Astron Planck's function uses wavelengths in Angstroms)

    stellar_component=fltarr(n_elements(st)) ; array of zeros to contain the new ISRF values. 

    FOR i=0L,n_elements(comp_pop.popid)-1 DO BEGIN ; Looping over all the stellar populations
         
        omega =  ((comp_pop.radius)[i]/((comp_pop.distance)[i]*pc2cm))^2 ; Dilution factor of a stellar population
            
        Inu = 4*planck(wave_angstrom,(comp_pop.temperature)[i])*(wave_angstrom)^2/c2a ; ergs/cm2/s/Hz/sr ;*4 and not using Lambert's cosine law
        
        stellar_component=stellar_component+(comp_pop.nstars)[i]*omega*Inu 
        
    ENDFOR
    
    out = stellar_component

ENDELSE
  
the_scope:
scope='STELLAR_POPULATION'
the_paramtag:
paramtag=['R_star (R_sol)','T_BB (K)','D (pc)','N_stars']
the_end:
return, out
end