; docformat = 'rst' ; ; NAME: ; cgConLevels ; ; PURPOSE: ; This program is designed to create "nicely formatted" contour levels for use in ; contour plots. The idea is to be able to produce evenly spaced contour intervals ; with the contour levels rounded off to the preferred degree of accuracy. The program ; will make a "guess" as to how to do this, but users can also take control of the ; process if the results are not pleasing enough. ; ;******************************************************************************************; ; ; ; Copyright (c) 2011, by Fanning Software Consulting, Inc. All rights reserved. ; ; ; ; Redistribution and use in source and binary forms, with or without ; ; modification, are permitted provided that the following conditions are met: ; ; ; ; * Redistributions of source code must retain the above copyright ; ; notice, this list of conditions and the following disclaimer. ; ; * Redistributions in binary form must reproduce the above copyright ; ; notice, this list of conditions and the following disclaimer in the ; ; documentation and/or other materials provided with the distribution. ; ; * Neither the name of Fanning Software Consulting, Inc. nor the names of its ; ; contributors may be used to endorse or promote products derived from this ; ; software without specific prior written permission. ; ; ; ; THIS SOFTWARE IS PROVIDED BY FANNING SOFTWARE CONSULTING, INC. ''AS IS'' AND ANY ; ; EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ; ; OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT ; ; SHALL FANNING SOFTWARE CONSULTING, INC. BE LIABLE FOR ANY DIRECT, INDIRECT, ; ; INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED ; ; TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; ; ; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ; ; ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ; ; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ; ; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ; ;******************************************************************************************; ; ;+ ; This program is designed to create "nicely formatted" contour levels for use in ; contour plots. The idea is to be able to produce evenly spaced contour intervals ; with the contour levels rounded off to the preferred degree of accuracy. The program ; will make a "guess" as to how to do this, but users can also take control of the ; process if the results are not pleasing enough. ; ; There is no claim that this program always produces the best results. It is more ; of a tool that can produce decent result in many situations. ; ; The program requires the `Coyote Library <http://www.idlcoyote.com/documents/programs.php>` ; to be installed on your machine. ; ; :Categories: ; Graphics, Utilities ; ; :Returns: ; A vector of contour levels of the requested number. Each level is ; rounded to a predefined or specified degree of accuracy. ; ; :Params: ; data: in, required ; The data for which contour levels are desired. ; ; :Keywords: ; factor: in, optional, type=float ; The program makes a "guess" at how to best round the levels in the data ; presented to it. This guess is not always what the user wants. This keyword ; allows the user to "fine tune" the guess, so that it behaves better. See the ; examples for details on how this keyword can be used. There is some danger, ; when using the factor keyword that the results will be terrible. Don't dismay! ; Just try something else. ; maxvalue: in, optional ; Normally, the levels are calculated using the minimum and maximum values ; of the input data. The maximum value used in the calculation can be replaced ; with this value, if you wish. If both the `MinValue` and MaxValue keywords ; are used, you do not need to pass the data parameter. ; minmax: out, optional ; The actual minimum and maximum values used to calculate the levels. ; minvalue: in, optional ; Normally, the levels are calculated using the minimum and maximum values ; of the input data. The minimum value used in the calculation can be replaced ; with this value, if you wish. ; nlevels: in, optional, type=integer, default=10 ; The number of contour levels desired. ; silent: in, optional, type=boolean, default=0 ; Set this keyword if you want the program to remain "silent" in the face of ; errors. If this keyword is set, the user should rely on the `Success` keyword ; to determine whether the program completed its work. ; step: out, optional ; The step size actually used in the program to calculate the levels. ; success: out, optional, type=boolen ; Upon return, will contain a 1 if the program executed succesfully and ; a 0 otherwise. ; ; :Examples: ; Here is the normal way a contour plot might be created:: ; ; cgDisplay, WID=0 ; data = cgScaleVector(cgDemoData(2), 0.1, 4534.5) ; cgLoadCT, 33, NColors=10, Bottom=1 ; cgContour, data, NLevels=10, /Fill, /Outline, $ ; Position=[0.1, 0.1, 0.9, 0.75], C_Colors=Indgen(10)+1 ; cgColorbar, NColors=9, Bottom=1, /Discrete, /Fit, $ ; Range=[Min(data), Max(data)], OOB_High=10, OOB_Low='white' ; ; Here is how the same plot might be created with cgConLevels ; to produce contour levels at 500 step intervals:: ; ; cgDisplay, WID=1 ; data = cgScaleVector(cgDemoData(2), 0.1, 4534.5) ; cgLoadCT, 33, NColors=10, Bottom=1 ; levels = cgConLevels(data, Factor=100, MINVALUE=0) ; cgContour, data, Levels=levels, /Fill, /Outline, $ ; Position=[0.1, 0.1, 0.9, 0.75], C_Colors=Indgen(10)+1 ; cgColorbar, NColors=9, Bottom=1, /Discrete, /Fit, $ ; Range=[Min(levels), Max(levels)], OOB_High=10, OOB_Low='white' ; ; In this example, the data is scaled so that it is a bit more perverse. ; The levels have been chosen so they round in the third decimal place:: ; ; cgDisplay, WID=2 ; data = cgScaleVector(cgDemoData(2), 0.153, 0.986) ; cgLoadCT, 33, NColors=10, Bottom=1 ; levels = cgConLevels(data) ; cgContour, data, Levels=levels, /Fill, /Outline, $ ; Position=[0.1, 0.1, 0.9, 0.75], C_Colors=Indgen(10)+1 ; cgColorbar, NColors=9, Bottom=1, /Discrete, /Fit, $ ; Range=[Min(levels), Max(levels)], OOB_High=10, OOB_Low='white' ; ; It might be better to have the data rounded in the second data place, to ; the nearest 0.05 value. This can be done with the `Factor` keyword:: ; ; cgDisplay, WID=3 ; data = cgScaleVector(cgDemoData(2), 0.153, 0.986) ; cgLoadCT, 33, NColors=10, Bottom=1 ; levels = cgConLevels(data, Factor=0.05) ; cgContour, data, Levels=levels, /Fill, /Outline, $ ; Position=[0.1, 0.1, 0.9, 0.75], C_Colors=Indgen(10)+1 ; cgColorbar, NColors=9, Bottom=1, /Discrete, /Fit, $ ; Range=[Min(levels), Max(levels)], OOB_High=10, OOB_Low='white' ; ; :Author: ; FANNING SOFTWARE CONSULTING:: ; David W. Fanning ; 1645 Sheely Drive ; Fort Collins, CO 80526 USA ; Phone: 970-221-0438 ; E-mail: david@idlcoyote.com ; Coyote's Guide to IDL Programming: http://www.idlcoyote.com ; ; :History: ; Change History:: ; Written, 8 December 2011. David W. Fanning ; ; :Copyright: ; Copyright (c) 2011, Fanning Software Consulting, Inc. ;- FUNCTION cgConLevels, data, $ FACTOR=factor, $ MAXVALUE=maxvalue, $ MINMAX=minmax, $ MINVALUE=minvalue, $ NLEVELS=nlevels, $ SILENT=silent, $ STEP=step, $ SUCCESS=success Compile_Opt idl2 ; Error handling Catch, theError IF theError NE 0 THEN BEGIN Catch, /CANCEL IF ~Keyword_Set(silent) THEN void = cgErrorMsg() success = 0 RETURN, -1 ENDIF ; Assume success. success = 1 ; Data is required, unless both MINVALUE and MAXVALUE are used. IF N_Elements(data) EQ 0 THEN BEGIN IF ~( (N_Elements(maxvalue)NE 0) && (N_Elements(minvalue) NE 0) ) THEN $ Message, 'Data must be passed to calculate contour levels.' ENDIF ; Set default number of levels to 10. SetDefaultValue, nlevels, 10 ; Find the step. IF N_Elements(data) NE 0 THEN mindata = Min(data, /NAN, MAX=maxdata) IF N_Elements(minvalue) NE 0 THEN mindata = minvalue IF N_Elements(maxvalue) NE 0 THEN maxdata = maxvalue step = (maxdata - mindata) / nlevels ; We are going to work with abolute values. Save the signs for the end. minSign = (mindata LT 0) ? -1 : 1 maxSign = (maxdata LT 0) ? -1 : 1 minabs = Abs(mindata) maxabs = Abs(maxdata) ; If you have a factor supplied by the user, then use it. Otherwise, try to figure ; out which factor you might use. IF N_Elements(factor) EQ 0 THEN BEGIN CASE 1 OF step GE 10000: BEGIN minabs = (minsign GT 0) ? Floor(minabs / 1000) * 1000. : Ceil(minabs / 1000) * 1000. maxabs = (maxsign GT 0) ? Ceil(maxabs / 1000) * 1000. : Floor(maxabs / 1000) * 1000. mindata = (minsign GT 0) ? minabs : minabs * (-1) maxdata = (maxsign GT 0) ? maxabs : maxabs * (-1) step = (maxdata - mindata) / nlevels step = Round(step / 1000) * 1000 END (step GE 1000) && (step LT 10000): BEGIN minabs = (minsign GT 0) ? Floor(minabs / 100) * 100. : Ceil(minabs / 100) * 100. maxabs = (maxsign GT 0) ? Ceil(maxabs / 100) * 100. : Floor(maxabs / 100) * 100. mindata = (minsign GT 0) ? minabs : minabs * (-1) maxdata = (maxsign GT 0) ? maxabs : maxabs * (-1) step = (maxdata - mindata) / nlevels step = Round(step / 100) * 100. END (step GE 100) && (step LT 1000): BEGIN minabs = (minsign GT 0) ? Floor(minabs / 10) * 10. : Ceil(minabs / 10) * 10. maxabs = (maxsign GT 0) ? Ceil(maxabs / 10) * 10. : Floor(maxabs / 10) * 10. mindata = (minsign GT 0) ? minabs : minabs * (-1) maxdata = (maxsign GT 0) ? maxabs : maxabs * (-1) step = (maxdata - mindata) / nlevels step = Round(step / 10) * 10. END (step GE 10) && (step LT 100): BEGIN minabs = (minsign GT 0) ? Floor(minabs) : Ceil(minabs) maxabs = (maxsign GT 0) ? Ceil(maxabs) : Floor(maxabs) mindata = (minsign GT 0) ? minabs : minabs * (-1) maxdata = (maxsign GT 0) ? maxabs : maxabs * (-1) step = (maxdata - mindata) / nlevels step = Float(Round(step)) END (step GE 1) && (step LT 10): BEGIN minabs = (minsign GT 0) ? Floor(minabs * 10) / 10. : Ceil(minabs * 10) / 10. maxabs = (maxsign GT 0) ? Ceil(maxabs * 10) / 10. : Floor(maxabs * 10) / 10. mindata = (minsign GT 0) ? minabs : minabs * (-1) maxdata = (maxsign GT 0) ? maxabs : maxabs * (-1) step = (maxdata - mindata) / nlevels step = Round(step * 10) / 10. END (step GE 0.1) && (step LT 1): BEGIN minabs = (minsign GT 0) ? Floor(minabs * 100) / 100. : Ceil(minabs * 100) / 100. maxabs = (maxsign GT 0) ? Ceil(maxabs * 100) / 100. : Floor(maxabs * 100) / 100. mindata = (minsign GT 0) ? minabs : minabs * (-1) maxdata = (maxsign GT 0) ? maxabs : maxabs * (-1) step = (maxdata - mindata) / nlevels step = Round(step * 100) / 100. END (step GE 0.01) && (step LT 0.1): BEGIN minabs = (minsign GT 0) ? Floor(minabs * 1000) / 1000. : Ceil(minabs * 1000) / 1000. maxabs = (maxsign GT 0) ? Ceil(maxabs * 1000) / 1000. : Floor(maxabs * 1000) / 1000. mindata = (minsign GT 0) ? minabs : minabs * (-1) maxdata = (maxsign GT 0) ? maxabs : maxabs * (-1) step = (maxdata - mindata) / nlevels step = Round(step * 1000) / 1000. END (step GE 0.001) && (step LT 0.01): BEGIN minabs = (minsign GT 0) ? Floor(minabs * 10000) / 10000. : Ceil(minabs * 10000) / 100000. maxabs = (maxsign GT 0) ? Ceil(maxabs * 10000) / 10000. : Floor(maxabs * 10000) / 100000. mindata = (minsign GT 0) ? minabs : minabs * (-1) maxdata = (maxsign GT 0) ? maxabs : maxabs * (-1) step = (maxdata - mindata) / nlevels step = Round(step * 10000) / 10000. END ELSE: ENDCASE ENDIF ELSE BEGIN minabs = (minsign GT 0) ? Floor(minabs / factor) * Float(factor) : Ceil(minabs / factor) * Float(factor) maxabs = (maxsign GT 0) ? Ceil(maxabs / factor) * Float(factor) : Floor(maxabs / factor) * Float(factor) mindata = (minsign GT 0) ? minabs : minabs * (-1) maxdata = (maxsign GT 0) ? maxabs : maxabs * (-1) step = (maxdata - mindata) / nlevels step = Round(step / factor) * Float(factor) ENDELSE ; Calculate the levels so they can be returned. levels = Indgen(nlevels) * step + mindata ; Set up the output variable, minmax, with the actual min and max values used for the levels. minmax = [mindata, maxdata] RETURN, levels END