PRO phangs_compare_seds_isrf,isrf_class,N_seds=N_seds,normalize=normalize,weighted=weighted ;phangs_compare_seds_isrf,15,N_seds=1000L dir=!phangs_data_dir+'/ISRF/GRIDS/' isrf_class_str='_isrfclass'+strtrim(isrf_class,2) model='DBP90' table_name=dir+model+'_MuseISRF_JWST_G0_YPAH_YVSG_4Phangs'+isrf_class_str+'.fits' st=mrdfits(table_name,1,h) Nst=n_elements(st) ;use_filters_names=['F360M','F0770W','F1000W','F1130W','F2100W'] use_filters_names=['F360M','F0770W','F1000W','F1130W','F2100W','PACS_BLUE','PACS_GREEN','PACS_RED','PSW','PMW','PLW'] filters=dustem_filter_names2filters(use_filters_names) Nfilters=n_elements(filters) ii=100L Nseds=100L IF keyword_set(N_seds) THEN Nseds=N_seds Nparams=3 true_params=fltarr(Nseds,Nparams) fitted_params=fltarr(Nseds,Nparams) seed=1 FOR j=0L,Nseds-1 DO BEGIN ;seed=1 inn=abs(randomu(seed)) ii=inn*Nst ;print,inn,ii sed=dustem_initialize_sed(Nfilters) ;sed=fltarr(Nfilters) tags=tag_names(st) FOR i=0L,Nfilters-1 DO BEGIN ind=where(tags EQ 'I'+filters[i],count) sed[i].filter=filters[i] sed[i].stokesI=st[ii].(ind[0]) ENDFOR sed.sigmaii=sed.stokesI*1.e-5 FOR i=0L,Nparams-1 DO BEGIN true_params[j,i]=st[ii].(i) ENDFOR ;stop fit_isrf_class_str='_isrfclass0' table_name_2=dir+model+'_MuseISRF_JWST_G0_YPAH_YVSG_4Phangs'+fit_isrf_class_str+'.fits' params=dustem_brute_force_fit(sed,table_name_2,filters,fact=fact,chi2=chi2,normalize=normalize,rchi2=rchi2,show_sed=show_sed $ ,params_hit=params_hit,params_uncertainties=params_uncertainties,params_min=params_min,params_max=params_max $ ,fixed_parameters_description=fixed_parameters_description,fixed_parameters_values=fixed_parameters_values $ ,weighted_params=weighted_params) ;fitted_params[j,*]=params IF keyword_set(weighted) THEN BEGIN fitted_params[j,*]=weighted_params ENDIF ELSE BEGIN fitted_params[j,*]=params ENDELSE ENDFOR win=0L xtit='True parameter ('+isrf_class_str+')' ytit='recovered parameter (Mathis ISRF)' window,win & win=win+1 cgplot,true_params[*,0],fitted_params[*,0],tit='G0',psym=4,/xlog,/ylog,xtit=xtit,ytit=ytit cgoplot,10^!x.crange,10^!y.crange,linestyle=2,color='red',thickness=3 window,win & win=win+1 cgplot,true_params[*,1],fitted_params[*,1],tit='Ypah',psym=4,/xlog,/ylog,xtit=xtit,ytit=ytit cgoplot,10^!x.crange,10^!y.crange,linestyle=2,color='red',thickness=3 window,win & win=win+1 cgplot,true_params[*,2],fitted_params[*,2],tit='Yvsg',psym=4,/xlog,/ylog,xtit=xtit,ytit=ytit cgoplot,10^!x.crange,10^!y.crange,linestyle=2,color='red',thickness=3 stop END