Blame view

src/idl_misc/Coyote_for_Dustemwrap/asinhscl.pro 9.73 KB
6db3528a   Jean-Philippe Bernard   adding librairies...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
;+
; NAME:
;       ASINHSCL
;
; PURPOSE:
;
;       This is a utility routine to perform an inverse hyperbolic sine
;       function intensity transformation on an image. I think of this
;       as a sort of "tuned" gamma or power-law function. The algorithm,
;       and notion of "asinh magnitudes", comes from a paper by Lupton,
;       et. al, in The Astronomical Journal, 118:1406-1410, 1999 September.
;       I've relied on the implementation of Erin Sheldon, found here:
;
;           http://cheops1.uchicago.edu/idlhelp/sdssidl/plotting/tvasinh.html
;
;       I'm also grateful of discussions with Marshall Perrin on the IDL
;       newsgroup with respect to the meaning of the "softening parameter", beta,
;       and for finding (and fixing!) small problems with the code.
;
;       Essentially this transformation allow linear scaling of noise values,
;       and logarithmic scaling of signal values, since there is a small
;       linear portion of the curve and a much large logarithmic portion of
;       the curve. (See the EXAMPLE section for some tips on how to view this
;       transformation curve.)
;
; AUTHOR:
;
;       FANNING SOFTWARE CONSULTING
;       David Fanning, Ph.D.
;       1645 Sheely Drive
;       Fort Collins, CO 80526 USA
;       Phone: 970-221-0438
;       E-mail: david@idlcoyote.com
;       Coyote's Guide to IDL Programming: http://www.idlcoyote.com
;
; CATEGORY:
;
;       Utilities
;
; CALLING SEQUENCE:
;
;       outputImage = ASINHSCL(image)
;
; ARGUMENTS:
;
;       image:         The image or signal to be scaled. Written for 2D images, but arrays
;                      of any size are treated alike.
;
; KEYWORDS:
;
;       BETA:          This keyword corresponds to the "softening parameter" in the Lupon et. al paper.
;                      This factor determines the input level at which linear behavior sets in. Beta
;                      should be set approximately equal to the amount of "noise" in the input signal.
;                      IF BETA=0 there is a very small linear portion of the curve; if BETA=200 the
;                      curve is essentially all linear. The default value of BETA is set to 3, which
;                      is appropriate for a small amount of noise in your signal. The value is always
;                      positive.
;
;       NEGATIVE:      If set, the "negative" of the result is returned.
;
;       MAX:           Any value in the input image greater than this value is
;                      set to this value before scaling.
;
;       MIN:           Any value in the input image less than this value is
;                      set to this value before scaling.
;
;       OMAX:          The output image is scaled between OMIN and OMAX. The
;                      default value is 255.
;
;       OMIN:          The output image is scaled between OMIN and OMAX. The
;                      default value is 0.
; RETURN VALUE:
;
;       outputImage:   The output, scaled into the range OMIN to OMAX. A byte array.
;
; COMMON BLOCKS:
;       None.
;
; EXAMPLES:
;
;       Plot,  ASinhScl(Indgen(256), Beta=0.0), LineStyle=0
;       OPlot, ASinhScl(Indgen(256), Beta=0.1), LineStyle=1
;       OPlot, ASinhScl(Indgen(256), Beta=1.0), LineStyle=2
;       OPlot, ASinhScl(Indgen(256), Beta=10.), LineStyle=3
;       OPlot, ASinhScl(Indgen(256), Beta=100), LineStyle=4
;
; RESTRICTIONS:
;
;     Requires cgScaleVector from the Coyote Library:
;
;        http://www.idlcoyote.com/programs/cgScaleVector.pro
;
;     Incorporates ASINH from the NASA Astronomy Library and renamed ASINHSCL_ASINH.
;
;       http://idlastro.gsfc.nasa.gov/homepage.html
;
; MODIFICATION HISTORY:
;
;       Written by:  David W. Fanning, 24 February 2006.
;       Removed ALPHA keyword and redefined the BETA keyword to correspond
;         to the "softening parameter" of Lupton et. al., following the
;         suggestions of Marshall Perrin. 25 April 2006. DWF.
;-
;******************************************************************************************;
;  Copyright (c) 2008, by Fanning Software Consulting, Inc.                                ;
;  All rights reserved.                                                                    ;
;                                                                                          ;
;  Redistribution and use in source and binary forms, with or without                      ;
;  modification, are permitted provided that the following conditions are met:             ;
;                                                                                          ;
;      * Redistributions of source code must retain the above copyright                    ;
;        notice, this list of conditions and the following disclaimer.                     ;
;      * Redistributions in binary form must reproduce the above copyright                 ;
;        notice, this list of conditions and the following disclaimer in the               ;
;        documentation and/or other materials provided with the distribution.              ;
;      * Neither the name of Fanning Software Consulting, Inc. nor the names of its        ;
;        contributors may be used to endorse or promote products derived from this         ;
;        software without specific prior written permission.                               ;
;                                                                                          ;
;  THIS SOFTWARE IS PROVIDED BY FANNING SOFTWARE CONSULTING, INC. ''AS IS'' AND ANY        ;
;  EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES    ;
;  OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT     ;
;  SHALL FANNING SOFTWARE CONSULTING, INC. BE LIABLE FOR ANY DIRECT, INDIRECT,             ;
;  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED    ;
;  TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;         ;
;  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND             ;
;  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT              ;
;  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS           ;
;  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.                            ;
;******************************************************************************************;
FUNCTION ASinhScl_ASinh, x
;
; NAME:
;     ASINH
; PURPOSE:
;     Return the inverse hyperbolic sine of the argument
; EXPLANATION:
;     The inverse hyperbolic sine is used for the calculation of asinh
;     magnitudes, see Lupton et al. (1999, AJ, 118, 1406)
;
; CALLING SEQUENCE
;     result = asinh( x)
; INPUTS:
;     X - hyperbolic sine, numeric scalar or vector or multidimensional array
;        (not complex)
;
; OUTPUT:
;     result - inverse hyperbolic sine, same number of elements as X
;              double precision if X is double, otherwise floating pt.
;
; METHOD:
;     Expression given in  Numerical Recipes, Press et al. (1992), eq. 5.6.7
;     Note that asinh(-x) = -asinh(x) and that asinh(0) = 0. and that
;     if y = asinh(x) then x = sinh(y).
;
; REVISION HISTORY:
;     Written W. Landsman                 February, 2001
;     Work for multi-dimensional arrays  W. Landsman    August 2002
;     Simplify coding, and work for scalars again  W. Landsman October 2003
;
   On_Error, 2

    y = ALog( Abs(x) + SQRT( x^2 + 1.0) )

    index = Where(x LT 0 ,count)
    IF count GT 0 THEN y[index] = -y[index]

    RETURN, y

 END ;-------------------------------------------------------------------------------



 FUNCTION ASinhScl, image, $
   BETA=beta, $
   NEGATIVE=negative, $
   MAX=maxValue, $
   MIN=minValue, $
   OMAX=maxOut, $
   OMIN=minOut

   ; Return to caller on error.
   On_Error, 2

   ; Check arguments.
   IF N_Elements(image) EQ 0 THEN Message, 'Must pass IMAGE argument.'

   ; Check for underflow of values near 0. Yuck!
   curExcept = !Except
   !Except = 0
   i = Where(image GT -1e-35 AND image LT 1e-35, count)
   IF count GT 0 THEN image[i] = 0.0
   void = Check_Math()
   !Except = curExcept

   ; Work in double precision.
   output = Double(image)

   ; Too damn many floating underflow warnings, no matter WHAT I do! :-(
   thisExcept = !Except
   !Except = 0

   ; Perform initial scaling of the image into 0 to 1.0.
   output = cgScaleVector(Temporary(output), 0.0, 1.0, MaxValue=maxValue, $
      MinValue=minValue, /NAN, Double=1)

   ; Check keywords.
   IF N_Elements(beta) EQ 0 THEN beta = 3.0D
   IF N_Elements(maxOut) EQ 0 THEN maxOut = 255B ELSE maxout = 0 > Byte(maxOut) < 255
   IF N_Elements(minOut) EQ 0 THEN minOut = 0B ELSE minOut = 0 > Byte(minOut) < 255
   IF minOut GE maxout THEN Message, 'OMIN must be less than OMAX.'

   ; Create a non-linear factor from the BETA value.
   scaled_beta = ((beta > 0) - minValue)/(maxValue - minValue)
   nonlinearity = 1.0D/(scaled_beta > 1e-12)

  ; Find out where 0 and 1 map in ASINH, then set these as MINVALUE and MAXVALUE
   ; in next cgScaleVector call. This is necessary to preserve proper scaling.
   extrema = ASinhScl_ASinh([0, 1.0D] * nonlinearity)

   ; Inverse hyperbolic sine scaling.
   output = cgScaleVector(ASinhScl_ASinh(Temporary(output)*nonlinearity), $
      minOut, maxOut, /NAN, Double=1, MinValue=extrema[0], MaxValue=extrema[1])

   ; Clear math errors.
   void = Check_Math()
   !Except = thisExcept

   ; Does the user want the negative result?
   IF Keyword_Set(negative) THEN RETURN, BYTE(maxout - Round(output) + minOut) $
      ELSE RETURN, BYTE(Round(output))

 END ;-------------------------------------------------------------------------------