Blame view

src/idl_misc/coyote_for_Dustemwrap/cgkrig2d.pro 22.1 KB
6db3528a   Jean-Philippe Bernard   adding librairies...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
; docformat = 'rst'
;
; NAME:
;   cgKrig2D
;
; PURPOSE:
; 
;   The cgKrig2D function interpolates a regularly or irregularly sampled set of points of
;   the form z = f(x, y) to produced a gridded 2D array using a statistical process known
;   as kriging.
;******************************************************************************************;
;                                                                                          ;
;  Copyright (c) 2013, by Fanning Software Consulting, Inc. All rights reserved.           ;
;                                                                                          ;
;  Redistribution and use in source and binary forms, with or without                      ;
;  modification, are permitted provided that the following conditions are met:             ;
;                                                                                          ;
;      * Redistributions of source code must retain the above copyright                    ;
;        notice, this list of conditions and the following disclaimer.                     ;
;      * Redistributions in binary form must reproduce the above copyright                 ;
;        notice, this list of conditions and the following disclaimer in the               ;
;        documentation and/or other materials provided with the distribution.              ;
;      * Neither the name of Fanning Software Consulting, Inc. nor the names of its        ;
;        contributors may be used to endorse or promote products derived from this         ;
;        software without specific prior written permission.                               ;
;                                                                                          ;
;  THIS SOFTWARE IS PROVIDED BY FANNING SOFTWARE CONSULTING, INC. ''AS IS'' AND ANY        ;
;  EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES    ;
;  OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT     ;
;  SHALL FANNING SOFTWARE CONSULTING, INC. BE LIABLE FOR ANY DIRECT, INDIRECT,             ;
;  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED    ;
;  TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;         ;
;  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND             ;
;  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT              ;
;  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS           ;
;  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.                            ;
;******************************************************************************************;
;
;+
; The cgKrig2D function interpolates a regularly or irregularly sampled set of points of
; the form z = f(x, y) to produced a gridded 2D array using a statistical process known
; as kriging. Kriging is a method of optimal interpolation based on regression against known
; or observed z values of surrounding data points, weighted according to spatial covariance
; values by various types of kriging model functions. Each grid location is estimated from
; observed values at surrounding locations. It is often used with spatial data.
; 
; Like all interpolation schemes, kriging can produces spurious results in extreme cases,
; but has the advantage of being able to compensate for the effects of data clustering and
; other, similar problems better than other interpolation methods such as inverse distance squared,
; splines, and triangulation methods. This particular version of Krig2D is orders of magnitude
; faster than the version of Krig2D that was distributed with IDL through IDL 8.2.3.
; 
; An excellent explanation of the kriging process can be found here::
; 
;    http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//009z00000076000000.htm
;    http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Semivariograms_and_covariance_functions
;    
; An explanation of the innovation that caused Krig2D to be made faster by several orders
; of magnitude can be found here::
; 
;    http://www.idlcoyote.com/code_tips/krigspeed.php
;    
; I've implemented the kriging mathematical models described in the following references::
; 
;    http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//009z00000076000000.htm
;    http://www.nbb.cornell.edu/neurobio/land/OldStudentProjects/cs490-94to95/clang/kriging.html 
;
; :Categories:
;    Math, Interpolation, Gridding
;    
; :Examples:
;    To create a dataset of N random points and determine the surface formed from such points::
;    
;       n = 500 ;# of scattered points
;       seed = -121147L ;For consistency
;       x = RANDOMU(seed, n)
;       y = RANDOMU(seed, n)
;
;      ; Create a dependent variable in the form a function of (x,y)
;      data = 3 * EXP(-((9*x-2)^2 + (7-9*y)^2)/4) + $
;         3 * EXP(-((9*x+1)^2)/49 - (1-0.9*y)) + $
;         2 * EXP(-((9*x-7)^2 + (6-9*y)^2)/4) - $
;         EXP(-(9*x-4)^2 - (2-9*y)^2)
;    
;      params = [0.5, 0.0]
;      interpArray = cgKrig2D(data, x, y, EXPONENTIAL=params, XOUT=xout, YOUT=yout)
;      cgSurf, interpArray, xout, yout, /Save
;      cgPlots, x, y, data, PSYM=2, Color='red', /T3D
;
; :Author:
;    FANNING SOFTWARE CONSULTING::
;       David W. Fanning 
;       1645 Sheely Drive
;       Fort Collins, CO 80526 USA
;       Phone: 970-221-0438
;       E-mail: david@idlcoyote.com
;       Coyote's Guide to IDL Programming: http://www.idlcoyote.com
;
; :History:
;     Written, 15 Oct 2013, based on a fast varient of the Krig2D program in the IDL library.
;
; :Copyright:
;     Copyright (c) 2013, Fanning Software Consulting, Inc.
;-

;+
; The exponential kriging semivariogram model function. This model should be applied when spatial
; autocorrelation decreases exponentially with increasing distance.
;
; :Returns:
;    A two-dimensional array containing the covariance model.
;
; :Params:
;
;     d: in, required, type=float
;         The distance matrix of every point to each other.
;
;     t: in, required, type=float
;         A three-element vector containing, in this order, the values for the range, nugget, and
;         covariance value for the sample population (also called the partial sill), or [A, C0, C].
;         The sill is properly described as sill = (c0 + c).
;-
FUNCTION cgKrig2d_Exponential, d, t

    Compile_Opt idl2
    
    ; Make assignments that allow you to create the mathematical models described in the reference.
    a = t[0]
    c0 = t[1]
    c = t[2]
    
    result = c0 + c * ( 1.0 - Exp( (-3*Abs(d))/a ) )
    indices = Where(d EQ 0, count)
    IF count GT 0 THEN result[indices] = 0
    
    RETURN, result
END

;+
; The spherical kriging semivariogram model function. This model show a progressive decrease of
; spatial autocorrelation until some distance, beyond which the autocorrelation is zero. This is
; one of the most commonly used models.
; 
; :Returns:
;    A two-dimensional array containing the covariance model.
;
; :Params:
; 
;     d: in, required, type=float
;         The distance matrix of every point to each other.
;         
;     t: in, required, type=float
;         A three-element vector containing, in this order, the values for the range, nugget, and
;         covariance value for the sample population (also called the partial sill), or [A, C0, C].
;         The sill is properly described as sill = (c0 + c).
;-
FUNCTION cgKrig2d_Spherical, d, t

    Compile_Opt idl2
    
    ; Make assignments that allow you to create the mathematical models described in the reference.
    a = t[0]
    c0 = t[1]
    c = t[2]

    ; Set up the results for the spherical model. Find where distance GT a and where distance = 0.
    gtAIndices = Where(d GT a, gtACount)
    zeroIndices = Where(d EQ 0, zeroCount)
    r = d/a
    result = c0 + c * ( (1.5*r) - (0.5*r*r*r) )
    IF gtACount GT 0 THEN result[gtAIndices] = c0 + c
    IF zeroCount GT 0 THEN result[zeroIndices] = 0
    
    RETURN, result
END

;+
; This function interpolates a regularly or irregularly gridded set of points Z = F(X,Y) using kriging.
; One of the kriging models MUST be used in the call to cgKrig2D. These are `CIRCULAR`, `EXPONENTIAL`, 
; `GAUSSIAN`, `LINEAR`, or `SPHERICAL`. The only models currently tested and in use are EXPONENTIAL and SPHERICAL.
; 
; :Returns:
;    A two-dimensional array containing the interpolated surface, sampled at input locations.
;
; :Params:
;    z: in, required, type=float
;       An array containing the values of the data points as a function of X and Y. If
;       X and Y are provided, this vector should be the same length. If X and Y are not
;       provided, this array must be a 2D array. In this case the output grid is determined
;       by `XGRID` (or `XVALUES`) and `YGRID` (or `YVALUES`) keywords, and default values for 
;       `NX` and `NY` are determined by the 2D dimensions of the input data array. If X and Y  
;       are not provided, regular gridding is assumed. Otherwise, the input data is assumed 
;       to be irregularly gridded, unless the 'REGULAR` keyword is set.
;       
;    x: in, optional, type=float
;       An array containing the x locations of the surface to be gridded. If use, the `Y` data 
;       parameter must also be used and all three positional parameters must be the same length.
;       
;    y: in, optional, type=float
;       An array containing the y locations of the surface to be gridded. If use, the `X` data
;       parameter must also be used and all three positional parameters must be the same length.
;
; :Keywords:
; 
;    bounds: in, optional, type=array
;       Set this keyword to a four-element array [xmin, ymin, xmax, ymax] containing the 
;       grid limits of the output grid. If not provided, the grid limits are set to the extent
;       of the X and Y vectors.
;
;    double: in, optional, type=boolean, default=0
;       Set this keyword to perform all calculations in double precision floating point math.
;       Otherwise, the calculations are done in since precision floating point math. 
;       
;    exponential: in, optional, type=array
;       Set this keyword to a two- or three-element vector containing the kriging model parameters
;       [A, C0, C] for the kriging exponential model. The parameter A is the range. At distances beyond
;       A, the semivariogram or covariance remains essentially constant. The parameter C0 is the nugget.
;       Theoretically, a zero separation distance, the semivariogram model should be zero. But, sometimes
;       the semivariogram model displays a "lag" where the model function intercepts that Y axis at a 
;       location other than zero. This is called the "nugget". The parameter C, if it is present, is the
;       value at which autocorrelation ceases to exist. If it is not present, it is calculated as the sample 
;       variance. The value C0+C is called the sill, which is the variogram value for very large distances. One 
;       of the kriging model keywords, `EXPONENTIAL` or `SPHERICAL`, must be used in the call to cgKrig2D. 
;       
;       For exponential models, the semivariagram at distance d is given as:
;            C(d) = C1 * Exp(-3 * (d/A)   if d not equal 0.
;            C(d) = C1 + C0               if d equal 0.
;     
;    gs: in, optional, type=array
;        A two-element array [xs, ys] giving the grid spacing of the output grid, where xs is the spacing
;        in the horizontal spacing between grid points, and ys is the vertical spacing. The default is 
;        based on the extents of x and y. If the grid starts at x value xmin and ends at xmax, then the 
;        default horizontal spacing is (xmax - xmin)/(`NX`-1). The ys parameter is computed in the same way.  
;        The default grid size, if neither `NX` or `NY` are specified, is 51 by 51.
;
;    nx: in, optional, type=integer, default=51
;        The output grid size in the X direction. If not specified, it can be be inferred from the `GS`
;        and `BOUNDS` keywords. If not specified, and required by the code, a value of 51 is used.
;        
;    ny: in, optional, type=integer, default=51
;        The output grid size in the Y direction. If not specified, it can be be inferred from the `GS`
;        and `BOUNDS` keywords. If not specified, and required by the code, a value of 51 is used.
;
;    regular: in, optional, type=boolean, default=0
;        Set this keyword to indicate the `Data` parameter is a 2D array containing measurements on a regular grid.
;        It is rare to set this keyword, as it is set automatically under many circumstances.
;        
;    spherical: in, optional, type=array
;       Set this keyword to a two- or three-element vector containing the exponential model parameters
;       [A, C0, C] for the kriging spherical model. The parameter A is the range. At distances beyond
;       A, the semivariogram or covariance remains essentially constant. The parameter C0 is the nugget.
;       Theoretically, a zero separation distance, the semivariogram model should be zero. But, sometimes
;       the semivariogram model displays a "lag" where the model function intercepts that Y axis at a 
;       location other than zero. This is called the "nugget". The parameter C, if it is present, is the
;       value at which autocorrelation ceases to exist. If it is not present, it is calculated as the sample
;       variance. The value C0+C is called the sill, which is the variogram value for very large distances. One 
;       of the kriging model keywords, `EXPONENTIAL` or `SPHERICAL`, must be used in the call to cgKrig2D. 
;
;       For spherical models, the semivariagram at distance d is given as:
;            C(d) = c0 + C * ( ( 1.5 * (d/a) ) - ( 0.5 * (d/a)^3) )    if d less than a.
;            C(d) = C + C0                                             if d greater than a.
;            C(d) = 0                                                  if d equals 0.
;
;    xgrid: in, optional, type=array
;        Set this keyword to a two-element array, [xstart, xspacing] to indicate where the output grid starts
;        and what the horizontal spacing will be. Do not specify the `XVALUES` keyword if this keyword is used.
;     
;    xvalues: in, optional, type=array
;        Set this keyword to a vector of X location values corresponding to the equivalent Z values in the `Data`
;        parameter. Do not use this keyword if using the `XGRID` keyword.
;        
;    ygrid: in, optional, type=array
;        Set this keyword to a two-element array, [ystart, yspacing] to indicate where the output grid starts
;        and what the vertical spacing will be. Do not specify the `YVALUES` keyword if this keyword is used.
;
;    yvalues: in, optional, type=array
;        Set this keyword to a vector of Y location values corresponding to the equivalent Z values in the `Data`
;        parameter. Do not use this keyword if using the `YGRID` keyword.
;
;-
FUNCTION cgKrig2d, z, x, y, $
    BOUNDS=bounds, $
    DOUBLE=double, $
    EXPONENTIAL=exponential, $
    GS=gs, $
    NX=nx, $
    NY=ny, $
    REGULAR=regular, $
    SPHERICAL=spherical, $
    XGRID=xgrid, $
    XOUT=xout, $
    XVALUES=xvalues, $
    YGRID=ygrid, $
    YOUT=yout, $
    YVALUES=yvalues
    
    Compile_Opt idl2
    
    ;On_Error, 2 ; Return to caller.
    
    ; Require some kind of positional parameter.
    IF N_Params() EQ 0 THEN Message, 'Syntax: griddedArray = cgKrig2d(z, x, y)'
    IF N_Params() EQ 2 THEN Message, 'Syntax: griddedArray = cgKrig2d(z, x, y) or griddedArray = cgKrig2d(data2d)'
    
    ; Are we doing a regular grid? Then we only need the first positional parameter and it must be 2D.
    regular = Keyword_Set(regular) || (N_Params() EQ 1) 
    double = Keyword_Set(double)
    IF regular THEN BEGIN
        ndims = Size(z, /N_DIMENSIONS)
        IF ndims NE 2 THEN Message, 'Regular gridding requires a 2D data set be provided.'
        dims = Size(z, /DIMENSIONS)
        nx = dims[0]
        ny = dims[1]
    ENDIF ELSE BEGIN ; Otherwise, irregular grid and all three parameters must be present and same size.
        IF N_Params() NE 3 THEN Message, 'All three positional parameters must be present to do irregular gridding.'
        IF N_Elements(z) NE N_Elements(x) THEN Message, 'All three positional parameters must contain the same number of elements.'
        IF N_Elements(z) NE N_Elements(y) THEN Message, 'All three positional parameters must contain the same number of elements.'
        IF N_Elements(nx) EQ 0 THEN nx = 51
        IF N_ELements(ny) EQ 0 THEN ny = 51
    ENDELSE
    
    ; Kriging model parameters MUST be provided.
    IF (N_Elements(exponential) EQ 0) && (N_Elements(spherical) EQ 0) THEN BEGIN
        Message, 'Model parameters must be provided. Use EXPONENTIAL or SPHERICAL keyword.'
    ENDIF ELSE BEGIN
        
        IF N_Elements(exponential) NE 0 THEN BEGIN
            IF (N_Elements(exponential) LT 2) || (N_Elements(exponential) GT 3) THEN BEGIN
                Message, 'The EXPONENTIAL model parameter vector must contain two or three elements.'
            ENDIF
            t = exponential
            functionName = 'cgKrig2d_Exponential'
        ENDIF
        
        IF N_Elements(spherical) NE 0 THEN BEGIN
            IF (N_Elements(spherical) LT 2) || (N_Elements(spherical) GT 3) THEN BEGIN
                Message, 'The SPHERICAL model parameter vector must contain two or three elements.'
            ENDIF
            t = spherical
            functionName = 'cgKrig2d_Spherical'
        ENDIF
        
    ENDELSE
    
    ; Did the user specify an XGRID or XVALUES keyword? If so, regular gridding is implied.
    IF N_Elements(xgrid) EQ 2 THEN BEGIN
        x = (double ? Dindgen(nx) : Findgen(nx)) * xgrid[1] + xgrid[0]
        regular = 1
    ENDIF ELSE BEGIN
        IF N_Elements(xvalues) GT 0 THEN BEGIN
            IF N_Elements(xvalues) NE nx THEN Message, 'XVALUES keyword must have ' + StrTrim(nx,2) + ' elements.'
            x = xvalues
            regular = 1
        ENDIF
    ENDELSE
    
    ; Did the user specify an YGRID or YVALUES keyword? If so, regular gridding is implied.
    IF N_Elements(ygrid) EQ 2 THEN BEGIN
        y = (double ? Dindgen(ny) : Findgen(ny)) * ygrid[1] + ygrid[0]
        regular = 1
    ENDIF ELSE BEGIN
        IF N_Elements(yvalues) GT 0 THEN BEGIN
            IF N_Elements(yvalues) NE ny THEN Message, 'YVALUES keyword must have ' + StrTrim(ny,2) + ' elements.'
            y = yvalues
            regular = 1
        ENDIF
    ENDELSE
    
    ; Make sure you have an X and Y value at this point if you are doing regular gridding.
    ; Expand the two vectors to be 2D arrays to match the data you are gridding.
    IF regular THEN BEGIN
        IF N_Elements(x) NE nx THEN x = (double) ? Dindgen(nx) : Findgen(nx)
        IF N_Elements(y) NE ny THEN y = (double) ? Dindgen(ny) : Findgen(ny)
        x = Rebin(x, nx, ny)
        y = Rebin(Reform(y, 1, ny), nx, ny)
    ENDIF
    
    ; Find the number of elements we are dealing with.
    numElements = N_Elements(x)
    
    ; If the model parameter vector contains only two elements, then we need a value for the variance. 
    IF N_Elements(t) EQ 2 THEN BEGIN
        meanData = Total(z, Double=double) / numElements
        varianceData = Total( (z - meanData)^2, DOUBLE=double) / numElements
        t = [t, varianceData - t[1]] ; Default value for C1 parameter.
    ENDIF
    
    ; Calculate the number of equations to solve.
    equNum = numElements + 1
    array = (double) ? DblArr(equNum, equNum) : FltArr(equNum, equNum)    
    
    ; Construct the symmetric distance matrix.
    FOR j=0,numElements-2 DO BEGIN
        k = Lindgen(numElements - j) + j
        d = (x[j]-x[k])^2 + (y[j]-y[k])^2
        array[j,k] = d
        array[k,j] = d
    ENDFOR

    ; Get the coefficient matrix by calling the appropriate model function.
    ; Fill the edges of the matrix.
    matrix = Call_Function(functionName, SQRT(array), t)       
    matrix[numElements,*] = 1.0           
    matrix[*,numElements] = 1.0
    matrix[numElements,numElements] = 0.0
    
    ; Use LU Decomposition to find a solution.
    LUDC, matrix, indx, DOUBLE=double    
    
    ; Make a boundary for the grid if one is not provided.
    xmin = Min(x, MAX=xmax)   
    ymin = Min(y, MAX=ymax)
    IF N_Elements(bounds) EQ 0 THEN bounds = [xmin, ymin, xmax, ymax]
    
    ; If a grid spacing parameter is not provided, compute one from the grid boundary.
    IF N_Elements(gs) EQ 0 THEN  gs = [(bounds[2]-bounds[0])/(nx-1.), (bounds[3]-bounds[1])/(ny-1.)]
        
    ; Subtract off a fudge factor to lessen roundoff errors.
    nx = Ceil((bounds[2]-bounds[0])/gs[0] - 1e-5)+1 ;# of elements
    ny = Ceil((bounds[3]-bounds[1])/gs[1] - 1e-5)+1
    
    ; Provide output grid vectors for the result.
    xout = bounds[0] + gs[0]*(double ? Dindgen(nx) : Findgen(nx))
    yout = bounds[1] + gs[1]*(double ? Dindgen(ny) : Findgen(ny))
    
    ; Create a similar matrix to hold the Lagrange multiplier.
    d = double ? DblArr(equNum) : FltArr(equNum)
    result = double ? DblArr(nx, ny, /NoZERO) : FltArr(nx, ny, /NoZERO)
    
    ; Solve the equations. Taking the LUSOL call out of the loop below is what
    ; speeds this function up by several orders of magnitude.
    az = LUSOL(matrix, indx, [Reform(z, N_Elements(z)), 0.0], DOUBLE=double)
    az = Rebin(Transpose(az), nx, numElements+1)
    xx = Rebin(Reform(x, 1, numElements), nx, numElements)
    dxsquare = (xx - Rebin(xout, nx, numElements))^2
    yy = Rebin(Reform(y, 1, numElements), nx, numElements)
    
    ; Do each row separately.
    FOR j=0,ny-1 DO BEGIN
        
        y0 = yout[j]
        
        ; Do all of the columns in parallel
        d = SQRT(dxsquare + (yy - y0)^2)
        d = Call_Function(functionName, d, t)
        
        ; Be sure to add the last row of AZ, which is the Lagrange constraint.
        result[*,j] = Total(d*az, 2) + az[*,numElements]
        
    ENDFOR
    
    ; Return the gridded result.
    RETURN, result
    
END