Blame view

LabTools/IRAP/JPB/check_phangs_ssps_isrf_prediction.pro 6.11 KB
80d9cb5e   Jean-Philippe Bernard   improved pathes
1
PRO check_phangs_ssps_isrf_prediction,show_map=show_map,from_restore=from_restore,from_classes_restore=from_classes_restore,save=save
8b65a68c   Jean-Philippe Bernard   First commit
2
3
4

;check_phangs_ssps_isrf_prediction
;check_phangs_ssps_isrf_prediction,/from_restore
80d9cb5e   Jean-Philippe Bernard   improved pathes
5
;check_phangs_ssps_isrf_prediction,/from_classes_restore,/save
8b65a68c   Jean-Philippe Bernard   First commit
6

cc81fcdc   Jean-Philippe Bernard   improved
7
;must have run make_phangs_ssps_isrf_prediction.pro before
8b65a68c   Jean-Philippe Bernard   First commit
8
9
10
11
12
13
14
15
16

from_restore:

;make_phangs_isrf_classes,/save
make_phangs_isrf_classes

stop

from_classes_restore:
b5aa4b9f   Jean-Philippe Bernard   fixed
17
data_dir=!phangs_data_dir+'/ISRF/WORK/'
8b65a68c   Jean-Philippe Bernard   First commit
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

;file=data_dir+'isrf_classes_one_ratio.sav'
restore,data_dir+'isrf_classes_one_ratio.sav',/verbose
restore,data_dir+'ngc0628_isrf_min_prediction.sav',/verb
;% RESTORE: Restored variable: ISRFS.
;% RESTORE: Restored variable: OBJECT_DISTANCE.
;% RESTORE: Restored variable: OBJECT_THICKNESS.
;% RESTORE: Restored variable: SOURCE_NAME.
restore,data_dir+'ngc0628_astrosat_voronoi_prediction_fast.sav',/verb
;% RESTORE: Restored variable: ACTUAL_SEDS.
;% RESTORE: Restored variable: PREDICTED_SEDS.
;% RESTORE: Restored variable: HREF.
;% RESTORE: Restored variable: ALL_SEDS_INDICES.
;% RESTORE: Restored variable: DO_NORMALIZE.
;% RESTORE: Restored variable: ALL_FILTERS.
;% RESTORE: Restored variable: NHVOR.

Nclasses=n_elements(classes)
refs_wavs=[classes[0].FLUX_RATIO_WAV]
reference_wavelength=classes[0].reference_wavelength
ratios=classes.flux_ratio

lambir=dustem_get_wavelengths()

Nlambir=(size(ISRFS))[1]
Nvor=(size(ISRFS))[2]

n_ISRFS=fltarr(Nlambir,Nvor)
n_wavs=fltarr(Nlambir,Nvor)
ind=where(lambir GT 1.)
indd=ind[0]
FOR vid=0L,Nvor-1 DO BEGIN
  n_ISRFS[*,vid]=ISRFS[*,vid]/ISRFS[indd,vid]
  n_wavs[*,vid]=lambir
ENDFOR

;compute flux ratio for each voronoi bin
vor_ratios=fltarr(Nvor)
FOR i=0L,Nvor-1 DO BEGIN
	vor_ratios[i]=interpol(n_ISRFs[*,i],lambir,refs_wavs[0])
ENDFOR
;fill in template ISRF of each class
;method='one_spectrum'
method='average_spectrum'
empty_classes=intarr(Nclasses)
CASE method OF
	'one_spectrum':BEGIN ;This is selection based on a single ISRF
		FOR i=0L,Nclasses-1 DO BEGIN
			ind=where(vor_ratios GT ratios[i],count)
			classes[i].ISRF_template=ptr_new(n_ISRFS[*,ind[0]])
		ENDFOR
	END
	'average_spectrum':BEGIN ;This is based on an average
		delta=1.0 ;This is a bit arbitrary. Chosen so that there is no empty classes
		FOR i=0L,Nclasses-1 DO BEGIN
			;ind=where(vor_ratios GE ratios[i]-ratios[i]*delta and vor_ratios LE ratios[i]+ratios[i]*delta,count)
			ratio_min=classes[i].flux_ratio_min
			ratio_max=classes[i].flux_ratio_max
			;ind=where(vor_ratios GT ratios_min[i] and vor_ratios LE ratios_max[i],count)
			ind=where(vor_ratios GT ratio_min and vor_ratios LE ratio_max,count)
			IF count NE 0 THEN BEGIN
				classes[i].ISRF_template=ptr_new(la_mean(n_ISRFS[*,ind],dim=-1))
			ENDIF ELSE BEGIN
				message,'Found no voronoi bin in class '+strtrim(i+1,2),/continue
				;stop
				empty_classes[i]=1
			ENDELSE
		ENDFOR
	END
ENDCASE
;===== remove empty classes
ind=where(empty_classes EQ 0,count)
classes=classes[ind]
Nclasses=count
;ratios_min=ratios_min[ind]
;ratios_max=ratios_max[ind]
;===== Fill in class number and name
FOR i=0L,Nclasses-1 DO BEGIN
	classes[i].number=i+1       ;because class 0 will be for Mathis ISRF
	str='I('+strtrim(refs_wavs[0],2)+'/I('+strtrim(reference_wavelength,2)+')='+strtrim(ratios[i],2)
	classes[i].name=str
ENDFOR

stop

;classify Voronoi bin according to flux ratio
;This could also be done on chi2, instead of just ratio ...
vor_class=lonarr(Nvor)
FOR i=0L,Nvor-1 DO BEGIN
  ;ratio=interpol(n_ISRFs[*,i],lambir,refs_wavs[0])
  this_ratio=vor_ratios[i]
  ind=where(classes.flux_ratio_min LT this_ratio and classes.flux_ratio_max GE this_ratio,count)
  ;ind=where(ratios_min LT this_ratio and ratios_max GE this_ratio,count)
  xv=ind[0]
  ;xv=round(interpol(xratios,ratios,this_ratio))
80d9cb5e   Jean-Philippe Bernard   improved pathes
113
114
115
116
117
  IF ptr_valid(classes[xv].voronoi_members) THEN BEGIN
     classes[xv].voronoi_members=ptr_new([*classes[xv].voronoi_members,i])
  ENDIF ELSE BEGIN
  	  classes[xv].voronoi_members=ptr_new([i])
  ENDELSE
8b65a68c   Jean-Philippe Bernard   First commit
118
119
  classes[xv].Nvor=classes[xv].Nvor+1
  this_chi2=total((n_ISRFS[*,i])^2-(*classes[xv].ISRF_template)^2)
80d9cb5e   Jean-Philippe Bernard   improved pathes
120
121
122
123
124
  IF ptr_valid(classes[xv].voronoi_chi2) THEN BEGIN
  	 classes[xv].voronoi_chi2=ptr_new([*classes[xv].voronoi_chi2,this_chi2])
  ENDIF ELSE BEGIN
  	 classes[xv].voronoi_chi2=ptr_new([this_chi2])
  ENDELSE
8b65a68c   Jean-Philippe Bernard   First commit
125
126
127
  ;This is a voronoi vector of the belonging class
  vor_class[i]=xv
ENDFOR
80d9cb5e   Jean-Philippe Bernard   improved pathes
128
129
;classes[xv].voronoi_chi2=ptr_new((*classes[xv].voronoi_chi2)[1:*])
;classes[xv].voronoi_members=ptr_new((*classes[xv].voronoi_members)[1:*])
8b65a68c   Jean-Philippe Bernard   First commit
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

;==== plot histogram of voronoi classes
res=histogram(vor_class,min=0,max=Nclasses-1,Nbin=Nclasses,locations=x)

window,win & win=win+1
!p.multi=[0,1,2]
cgplot,x,res,psym=10,xrange=[-1,Nclasses+1],/xstyle,xtit='Class',ytit='Npix'
cgplot,ratios,res,psym=10,xrange=[1.e-5,10],/xstyle,xtit='Ratio',ytit='Npix',/xlog

;==== make a sky map of the classes
window,win & win=win+1
map_classes=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'))+la_undef()
FOR i=0L,Nvor-1 DO BEGIN
    map_classes[*all_seds_indices[i]]=vor_class[i]
ENDFOR
obp=[1.1,0.,1.15,1]
image_cont20,map_classes,href,/square,/silent,image_color_table='jpbloadct',axis_color_table=1,imrange=[-1,Nclasses+1],off_bar=obp,tit='Class map'

;=== plot ISRF templates of all classes
window,win & win=win+1
xtit='Wavelength [mic]'
ytit='Normalized ISRF'
tit='ISRF classes'
loadct,13
!p.multi=0
med_isrf=la_median(n_ISRFS,dim=-1)
cgplot,lambir,med_isrf,color='black',/xlog,/ylog,xrange=[1.e-2,1.e2],/xsty,yrange=[1.e-5,10.],/nodata,xtit=xtit,ytit=ytit,tit=tit
colors=fix(range_gen(Nclasses,[10,250]))
FOR i=0L,Nclasses-1 DO cgoplot,lambir,*classes[i].ISRF_template,color=colors[i]
cgoplot,lambir,med_isrf,color='black',thick=2.
cgoplot,lambir,*class0.isrf_template,color='black',thick=2.
cgoplot,replicate(refs_wavs,2),10^!y.crange,linestyle=2
cgoplot,replicate(reference_wavelength,2),10^!y.crange,linestyle=2


;stop

80d9cb5e   Jean-Philippe Bernard   improved pathes
167
168
169
170
171
172
173
IF keyword_set(save) THEN BEGIN
	file_save=data_dir+'ngc0682_isrf_classes_one_ratio.sav'
	message,'About to write '+file_save,/continue
	message,'Make sure you are allowed to do that and type .c to proceed.',/continue
	save,classes,vor_class,map_classes,file=file_save,/verb
	message,'Saved '+file_save,/continue
ENDIF
8b65a68c   Jean-Philippe Bernard   First commit
174
175
176
177
178
179
180

message,'========== Finished computing ISRF classes',/continue

stop


END