Blame view

src/idl_misc/Coyote_for_Dustemwrap/cgotsu_threshold.pro 16.1 KB
6db3528a   Jean-Philippe Bernard   adding librairies...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
; docformat = 'rst'
;
; NAME:
;   cgOTSU_THRESHOLD
;
; PURPOSE:
;   The purpose of this function is to find an optimal threshold for separating
;   a bimodal distribution of pixels in an image histogram. The Otsu Threshold method
;   is explained here: http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html.
;
;******************************************************************************************;
;                                                                                          ;
;  Copyright (c) 2012, by Fanning Software Consulting, Inc. All rights reserved.           ;
;                                                                                          ;
;  Redistribution and use in source and binary forms, with or without                      ;
;  modification, are permitted provided that the following conditions are met:             ;
;                                                                                          ;
;      * Redistributions of source code must retain the above copyright                    ;
;        notice, this list of conditions and the following disclaimer.                     ;
;      * Redistributions in binary form must reproduce the above copyright                 ;
;        notice, this list of conditions and the following disclaimer in the               ;
;        documentation and/or other materials provided with the distribution.              ;
;      * Neither the name of Fanning Software Consulting, Inc. nor the names of its        ;
;        contributors may be used to endorse or promote products derived from this         ;
;        software without specific prior written permission.                               ;
;                                                                                          ;
;  THIS SOFTWARE IS PROVIDED BY FANNING SOFTWARE CONSULTING, INC. ''AS IS'' AND ANY        ;
;  EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES    ;
;  OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT     ;
;  SHALL FANNING SOFTWARE CONSULTING, INC. BE LIABLE FOR ANY DIRECT, INDIRECT,             ;
;  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED    ;
;  TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;         ;
;  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND             ;
;  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT              ;
;  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS           ;
;  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.                            ;
;******************************************************************************************;
;
;+
; The purpose of this function is to find an optimal threshold for separating
; a bimodal distribution of pixels in an image histogram. The algorithm used is the
; "faster approach" algorithm explained 
; `on this web page <http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html>`.
;
; .. image:: cgotsu_threshold.png
; 
; :Categories:
;    Utility
;    
; :Returns:
;     The optimal threshold that separates two populations of pixels is returned.
;    
; :Params:
;    data: in, required, 
;       The data from which the histogram is created.
;       
; :Keywords:
;    binsize: in, optional
;       The binsize of the histogram. By default, Scott's Choice of bin size for histograms is used::
;                         
;           binsize = (3.5 * StdDev(data)) / N_Elements(data)^(0.3333)
;           
;       unless the data is byte type. Then a BINSIZE of 1 is used by default
;                            
;       If BINSIZE in not defined, and NBINS is defined, the BINSIZE is calcuated as::
;                         
;            binsize = (Max(dataToHistogram) - Min(dataToHistogram)) / (NBINS -1)
;                             
;       While it is pointed out in the HISTOGRAM documentation, it is extremely
;       important that the BINSIZE be of the same data type as the data you are going to
;       calculate the histogram of. If it is not VERY strange things can happen. I've
;       tried to protect you from most of the bad things, but I don't have a high confidence
;       level that I have done it for every situation. If you see something that "just don't
;       look right", I would check first to see if your data types match. That might solve
;       all your problems.
;    example: in, optional, type=boolean, default=0
;       Set this keyword if you wish to use the example data from the 
;       `reference documentation <http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html>`.
;    histdata: out, optional
;       The output value of the internal HISTOGRAM command.
;    l64: in, optional, type=boolean, default=0                       
;       If set, the return value of HISTOGRAM are 64-bit integers, rather than
;       the default 32-bit integers. Set by default for data types greater than or
;       equal to 12.
;    locations: out, optional
;       Starting locations of each bin. (See the HISTOGRAM documentation for details.)
;    max: in, optional
;       The maximum value to use in calculating input histogram. Equivalent to the MAX keyword
;       in the HISTOGRAM documentation.
;    min: in, optional
;       The minimum value to use in calculating input histogram. Equivalent to the MIN keyword
;       in the HISTOGRAM documentation.
;    missing: in, optional
;       The value that should be represented as "missing" and not used in the histogram.
;       Be aware that if the input data is not of type "float" or "double" that the input
;       data will be converted to floating point prior to calculating the histogram.
;    nan: in, optional, type=boolean, default=0   
;       If set, ignore NAN values in calculating and plotting histogram.
;    nbins: in, optional, type=integer
;       The number of output bins in the histogram. Meaning is slightly different from
;       meaning in the HISTOGRAM command. Used only to calculate BINSIZE when BINSIZE is
;       not specified. In this case, binsize = rangeofData/(nbins-1).
;    omax: out, optional
;       The maximum output value used to construct the histogram. (See HISTOGRAM documentation.)
;    omin: out, optional
;       The minimum output value used to construct the histogram. (See HISTOGRAM documentation.)
;    plotit: in, optional, type=boolean, default=0
;       If this keyword is set, a histogram of the data is plotted along with a plot of the
;       between class variance to show the selected threshold.
;    reverse_indices: out, optional
;       The list of reverse indices returned from the HISTOGRAM command. (See HISTOGRAM documentation.)
;          
; :Examples:
;    Set the `Example` keyword to use the data from the reference page.
;        
; :Author:
;    FANNING SOFTWARE CONSULTING::
;       David W. Fanning 
;       1645 Sheely Drive
;       Fort Collins, CO 80526 USA
;       Phone: 970-221-0438
;       E-mail: david@idlcoyote.com
;       Coyote's Guide to IDL Programming: http://www.idlcoyote.com
;
; :History:
;    Change History::
;       Written by:  David W. Fanning, 13 November 2012, from a program named OTSU_THRESHOLD by Carl Salvaggio and
;           modified by Gianguido Cianci.
;       The OTSU_THRESHOLD algorithm used previously made many assumptions about the data. The algorithm used here
;           has been completely rewritten to comply with the values in the reference page and to avoid making 
;           assumptions about the data used to create the histogram. 21 November 2012. DWF.
;       Modified to set L64 keyword if data type GE 14 (suggested by user). 22 November 2012. DWF.
;       Modified the threshold value to use DIndGen instead of IndGen, which was causing incorrect
;           results with integer data. 24 November 2012. DWF.
;         
; :Copyright:
;     Copyright (c) 2012, Fanning Software Consulting, Inc.
;-
FUNCTION cgOTSU_THRESHOLD, $        ; The program name.
   data, $                          ; The data to threshold.
   BINSIZE=binsize, $               ; The histogram bin size.
   EXAMPLE=example, $               ; Set this keyword to see the reference page example.
   HISTDATA=histdata, $             ; The output of the HISTOGRAM command.
   L64=l64, $                       ; Input for HISTOGRAM.
   LOCATIONS=locations, $           ; The histogram bin locations.
   MAX=max, $                       ; The maximum value to HISTOGRAM.
   MIN=min, $                       ; The minimum value to HISTOGRAM.
   MISSING=missing, $               ; The value that indicates "missing" data to be excluded from the histgram.
   NAN=nan, $                       ; Check for NAN.
   NBINS=nbins, $                   ; The number of bins to display.
   OMAX=omax, $                     ; The maximum value of the histogram on output.
   OMIN=omin, $                     ; The minimum value of the histogram on output.
   PLOTIT=plotit, $                 ; Set this keyword to see the results of the thresholding algorithm.
   REVERSE_INDICES=ri               ; The reverse indices of the histogram.
    
   Compile_Opt idl2

   ; Error handling.
   Catch, theError
   IF theError NE 0 THEN BEGIN
      Catch, /Cancel
      ok = cgErrorMsg()
      IF N_Elements(nancount) EQ 0 THEN BEGIN
            IF N_Elements(_data) NE 0 THEN data = Temporary(_data)
      ENDIF ELSE BEGIN
            IF nancount EQ 0 THEN BEGIN
                IF N_Elements(_data) NE 0 THEN data = Temporary(_data)
            ENDIF
      ENDELSE
      RETURN, -9999
   ENDIF
   
   ; Need data or the EXAMPLE keyword to continue.
   IF N_Elements(data) EQ 0 && ~Keyword_Set(example) THEN BEGIN
       Message, 'Data values to threshold are required.'
   ENDIF
   
   ; Are we doing an example? Use the data from the reference page at
   ; http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html.
   IF Keyword_Set(example) THEN BEGIN
      data = [Replicate(0,8), Replicate(1,7), Replicate(2,2), Replicate(3,6), Replicate(4,9), Replicate(5,4)]
      binsize = 1
   ENDIF
   
   ; Get the data type. Important to match data type with binsize type. Otherwise
   ; strange things occur in the Histogram command.
   dataType = Size(data, /TYPE)
   
   ; If this is byte data, then use a BINSIZE of 1, unless instructed otherwise.
   IF dataType EQ 1 THEN BEGIN
      IF (N_Elements(binsize) EQ 0) && (N_Elements(nbins) EQ 0) THEN binsize = 1B
   ENDIF
   
   ; If the data type is 14 or above, set the L64 keyword. Necessary to give enough
   ; precision in the Otsu calculations.
   IF dataType GE 14 THEN L64 = 1
      
   ; Check the data for NANs and alert the user if the NAN keyword is not set.
   IF dataType EQ 4 OR datatype EQ 5 THEN BEGIN
        goodIndices = Where(Finite(data), count, NCOMPLEMENT=nancount, COMPLEMENT=nanIndices)
        IF nancount GT 0 THEN BEGIN
           IF ~Keyword_Set(nan) THEN BEGIN
               Message, 'NANs found in the data. NAN keyword is set to 1.', /INFORMATIONAL
               nan = 1
           ENDIF
        ENDIF 
   ENDIF 

   ; The only sensible way to proceed is to make a copy of the data. Otherwise, I'll have
   ; a devil of a time putting it back together again at the end. There is a bug in
   ; HISTOGRAM when using BYTE data, so convert that here
   IF N_Elements(_data) EQ 0 THEN BEGIN
      IF Size(data, /TNAME) EQ 'BYTE' THEN BEGIN
          _data = Fix(data) 
       ENDIF ELSE BEGIN
          _data = data
       ENDELSE
   ENDIF
   
   ; If you have any "missing" data, then the data needs to be converted to float
   ; and the missing data set to F_NAN.
   IF N_Elements(missing) NE 0 THEN BEGIN
      missingIndices = Where(_data EQ missing, missingCount)
      IF missingCount GT 0 THEN BEGIN
         CASE datatype OF
            4: _data[missingIndices] = !Values.F_NAN
            5: _data[missingIndices] = !Values.D_NAN
            ELSE: BEGIN
                _data = Float(_data)
                dataType = 4
                _data[missingIndices] = !Values.F_NAN
                END
         ENDCASE
         nan = 1
      ENDIF ELSE BEGIN
        IF missingCount EQ N_Elements(_data) THEN $
            Message, 'All values are "missing"!'
      ENDELSE
   ENDIF
   
   ; Check for histogram keywords.
   IF N_Elements(binsize) EQ 0 THEN BEGIN
      range = Max(_data, /NAN) - Min(_data, /NAN)
      IF N_Elements(nbins) EQ 0 THEN BEGIN  ; Scott's Choice
         binsize = (3.5D * StdDev(_data, /NAN))/N_Elements(_data)^(1./3.0D) 
         IF (dataType LE 3) OR (dataType GE 12) THEN binsize = Round(binsize) > 1
         binsize = Convert_To_Type(binsize, dataType)
      ENDIF ELSE BEGIN
         binsize = range / (nbins -1)
         IF dataType LE 3 THEN binsize = Round(binsize) > 1
         binsize = Convert_To_Type(binsize, dataType)
      ENDELSE
   ENDIF ELSE BEGIN
       IF Size(binsize, /TYPE) NE dataType THEN BEGIN
          IF dataType LE 3 THEN binsize = Round(binsize) > 1
          binsize = Convert_To_Type(binsize, dataType)
       ENDIF
   ENDELSE
   IF N_Elements(min) EQ 0 THEN min = Min(_data, NAN=nan)
   IF N_Elements(max) EQ 0 THEN max = Max(_data, NAN=nan)

   ; Calculate the histogram.
    histdata = Histogram(_data, $
      BINSIZE=binsize, $
      L64=l64, $
      MAX=max, $
      MIN=min, $
      NAN=nan, $
      LOCATIONS=locations, $
      OMAX=omax, $
      OMIN=omin, $
      REVERSE_INDICES=ri)
      
   ; Lot's of bad things can happen next. Let's pretend we don't know about them.
   except = !Except
   !Except = 0
   
   ; The threshold values to evaluate.
   thresholds = DIndGen(N_Elements(histdata)) * binsize + oMin
   
   ; Create a cumulative distribution to calculate the weighting factors.
   ; Subscripting of the background weights and addition of a 0 value
   ; is necessary to conform with the outputs in the reference documenation.
   ; I presume it is because the first threshold should be on the near side
   ; of the first bin, rather than on the far side.
   cdf = Total(histdata, /DOUBLE, /CUMULATIVE)
   reverseCDF = Total(Reverse(histdata), /DOUBLE, /CUMULATIVE)
   Wb = [0,cdf[0:N_Elements(cdf)-2]] / Total(histdata)
   Wf = Reverse(reverseCDF / Total(histdata))
   
   ; Find the means. 
   mu_b = Total(histdata * thresholds, /DOUBLE, /CUMULATIVE) / cdf
   mu_b = [0, mu_b[0:N_Elements(mu_b)-2]]
   mu_f = Reverse(Total(Reverse(histdata) * Reverse(thresholds), /DOUBLE, /CUMULATIVE) / reverseCDF)

   ; Calculate the Between-Class variance.
   betweenClassVariance = Wb * Wf * (mu_b - mu_f)^2
   
   ; The threshold is found by locating the maximum value and
   ; obtaining the index into the array.
   maximumVariance = Max(betweenClassVariance, thresholdIndex)
   threshold = thresholdIndex*binsize + oMin

   ; Useful printouts if we are doing the example.
   IF Keyword_Set(example) THEN BEGIN
       Print, 'Wb:        ', Wb
       Print, 'Wf:        ', Wf
       Print, 'Mu_b:      ', mu_b
       Print, 'Mu_f:      ', mu_f
       Print, 'Variance:  ', betweenClassVariance
       Print, 'Threshold: ', threshold
       
       cgDisplay, Title='Example OTSU Threshold Method', /Free
       !P.Multi = [0,1,2]
       cgHistoplot, _data, Binsize=binsize, /Fill
       cgPlots, [threshold, threshold], !Y.CRange, Color='blue', Thick=2
       cgPlot, betweenClassVariance, Title='Between Class Variance'
       cgPlots, [threshold, threshold], !Y.CRange, Color='blue', Thick=2
       cgText, 0.23, 2.60, 'Threshold: ' + String(threshold, Format='(I0)'), Color='blue', Font=0
       !P.Multi = 0
   ENDIF
   
   ; Need a plot?
   IF Keyword_Set(plotit) THEN BEGIN
       cgDisplay, Title='OTSU Threshold Results', /Free
       !P.Multi = [0,1,2]
       cgHistoplot, _data, $
          BINSIZE=binsize, $
          L64=l64, $
          LOCATIONS=locations, $
          MAXINPUT=max, $
          MININPUT=min, $
          NAN=nan, $
          /Fill
       cgPlots, [threshold, threshold], !Y.CRange, Color='blue', Thick=2
       cgPlot, locations, betweenClassVariance, Title='Between Class Variance Threshold: ' + $
           String(threshold,Format='(F0.2)'), XStyle=1
       cgPlots, [threshold, threshold], !Y.CRange, Color='blue', Thick=2
       !P.Multi = 0
   ENDIF
   
   ; Clean up.
   !Except = except
   
   ; Return result.
   RETURN, threshold
   
END