Blame view

src/idl_misc/Coyote_for_Dustemwrap/setintersection.pro 8.61 KB
a114c166   Annie Hughes   removed redundant...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
;+
; NAME:
;  SETINTERSECTION
;
; PURPOSE:
;
;   This function is used to find the intersection between two sets of integers.
;
; AUTHOR:
;
;   FANNING SOFTWARE CONSULTING
;   David Fanning, Ph.D.
;   1645 Sheely Drive
;   Fort Collins, CO 80526 USA
;   Phone: 970-221-0438
;   E-mail: david@idlcoyote.com
;   Coyote's Guide to IDL Programming: http://www.idlcoyote.com/
;
; CATEGORY:
;
;   Utilities
;
; CALLING SEQUENCE:
;
;   intersection = SetIntersection(set_a, set_b)
;
; RETURN VALUE:
;
;   intersection:  A vector of values that are found in both set_a and set_b.
;
; ARGUMENTS:
;
;   set_a:         A vector of integers.
;   
;   set_b:         A vector of integers.
;
; KEYWORDRS:
; 
;  COUNT:          An output variable that contains the number of elements in the intersection vector.
;
;  NORESULT:       Set this keyword to a value that will be returned from the function
;                  if no intersection between the two sets of numbers is found. By default, -1.
;                  
;  POSITIONS:      And output keyword that will return the positions or locations in A where the values
;                  in B appear.
;                  
;  INDICIES_A:     The indices in vector A where the intersected values appear. Note, this requires
;                  the intersected points be unique in each vector. The POSITIONS 
;                  keyword will return ALL the positions of the match, even if there are non-unique matches.
;  
;  INDICIES_B:     The indices in vector B where the intersected values appear. This assumes that
;                  the intersected points are represented uniquely in the A and B vectors.
;
;  SUCCESS:        An output keyword that is set to 1 if an intersection was found, and to 0 otherwise.
;
; EXAMPLE:
;
;  IDL> set_a = [1,2,3,4,5]
;  IDL> set_b = [4,5,6,7,8,9,10,11]
;  IDL> Print, SetIntersection(set_a, set_b)
;          4   5
;
;  See http://www.idlcoyote.com/tips/set_operations.html for other types of set operations.
;  
; NOTES:
; 
;  If you read the Set Operations article pointed to above, you will see quite a lot of
;  discussion about what kinds of algorithms are faster than others. The Histogram 
;  algorithms implemented here are sometimes NOT the fastest algorithms, especially 
;  for sparse arrays. If this is a concern in your application, please be sure to read
;  that article.
;  
; MODIFICATION HISTORY:
;
;  Written by: David W. Fanning, October 31, 2009, from code originally supplied to the IDL
;     newsgroup by Research Systems software engineers.
;  Yikes, bug in original code only allowed positive integers. Fixed now. 2 Nov 2009. DWF.
;  Fixed a problem when one or both of the sets was a scalar value. 18 Nov 2009. DWF.
;  Added a POSITIONS keyword. 30 Nov 2012. DWF.
;  Added a COUNT keyword 3 Dec 2012. DWF.
;  Added INDICES_A and INDICES_B keywords at R.G. Stockwell's suggestion. 13 Dec 2012. DWF.
;-
;******************************************************************************************;
;  Copyright (c) 2009, by Fanning Software Consulting, Inc.                                ;
;  All rights reserved.                                                                    ;
;                                                                                          ;
;  Redistribution and use in source and binary forms, with or without                      ;
;  modification, are permitted provided that the following conditions are met:             ;
;                                                                                          ;
;      * Redistributions of source code must retain the above copyright                    ;
;        notice, this list of conditions and the following disclaimer.                     ;
;      * Redistributions in binary form must reproduce the above copyright                 ;
;        notice, this list of conditions and the following disclaimer in the               ;
;        documentation and/or other materials provided with the distribution.              ;
;      * Neither the name of Fanning Software Consulting, Inc. nor the names of its        ;
;        contributors may be used to endorse or promote products derived from this         ;
;        software without specific prior written permission.                               ;
;                                                                                          ;
;  THIS SOFTWARE IS PROVIDED BY FANNING SOFTWARE CONSULTING, INC. ''AS IS'' AND ANY        ;
;  EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES    ;
;  OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT     ;
;  SHALL FANNING SOFTWARE CONSULTING, INC. BE LIABLE FOR ANY DIRECT, INDIRECT,             ;
;  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED    ;
;  TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;         ;
;  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND             ;
;  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT              ;
;  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS           ;
;  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.                            ;
;******************************************************************************************;
FUNCTION SetIntersection, set_a, set_b, $
    COUNT=count, $
    INDICES_A=indices_a, $
    INDICES_B=indices_b, $
    NORESULT=noresult, $
    POSITIONS=positions, $
    SUCCESS=success
    
    Compile_Opt StrictArr, DefInt32
    
    ; Set up noresult value.
    IF N_Elements(noresult) EQ 0 THEN noresult = -1
    
    ; Error handling.
    Catch, theError
    IF theError NE 0 THEN BEGIN
      Catch, /CANCEL
      void = Error_Message()
      success = 0
      RETURN, noresult
    ENDIF
    
    ; Check parameters.
    IF N_Params() NE 2 THEN Message, 'Two input parameters or sets are required.'
    
    ; The input sets must be integers.
    IF (Size(set_a, /TYPE) GT 3) AND (Size(set_a, /TYPE) LT 12) THEN $
        Message, 'Set A must be an integer array.'
    IF (Size(set_b, /TYPE) GT 3) AND (Size(set_b, /TYPE) LT 12) THEN $
        Message, 'Set B must be an integer array.'

    ; If either of the sets is a scalar, make it a vector.
    IF N_Elements(set_a) EQ 1 && (Size(set_a))[0] EQ 0 THEN set_a = [set_a]
    IF N_Elements(set_b) EQ 1 && (Size(set_b))[0] EQ 0 THEN set_b = [set_b]

    ; Assume success.
    success = 1
    count = 0
   
    ; Find the intersection of the ranges.
    mina = Min(set_a, Max=maxa) 
    minb = Min(set_b, Max=maxb)
    minab = mina > minb
    maxab = maxa < maxb

    ; If the set ranges don't intersect, leave now.
    IF ((maxa LT minab) AND (minb GT maxab)) OR ((maxb LT minab) AND (mina GT maxab)) THEN BEGIN
        success = 0
        RETURN, noresult
    ENDIF
    
    ; Find the intersection.
    r = Where((Histogram(set_a, Min=minab, Max=maxab, REVERSE_INDICES=ra) NE 0) AND  $
              (Histogram(set_b, Min=minab, Max=maxab, REVERSE_INDICES=rb) NE 0), count)
              
    ; Was there an intersection? If not, leave now.
    IF count EQ 0 THEN BEGIN
        success = 0
        RETURN, noresult 
    ENDIF 
    
    ; Do you want the positions in A where B is found?
    IF Arg_Present(positions) THEN BEGIN
        FOR j=0,N_Elements(r)-1 DO BEGIN
           IF N_Elements(thesePositions) EQ 0 THEN BEGIN
               thesePositions = [ReverseIndices(ra, r[j])]
           ENDIF ELSE BEGIN
               thesePositions = [thesePositions, ReverseIndices(ra, r[j])]
           ENDELSE
        ENDFOR
        positions = thesePositions
    ENDIF
    
    ; Do you want the indices of the matches? Code provided by
    ; R.G. Stockwell. Note that if you ask for indices, the sets
    ; may NOT have duplicate values in them. Each value in both sets
    ; must be unique.
    IF Arg_Present(indices_a) || Arg_Present(indices_b) THEN BEGIN
        aindices = LonArr(count)
        bindices = LonArr(count)
        FOR matchCounter=0,count-1 DO BEGIN
            j = r[matchCounter]
            aindices[matchcounter] = ra[ra[j]:ra[j+1]-1]
            bindices[matchcounter] = rb[rb[j]:rb[j+1]-1]
        ENDFOR
        indices_a = Temporary(aindices)
        indices_b = Temporary(bindices)
    ENDIF
    
    ; Here is the result.
    result = Temporary(r) + minab

    ; Return the result. Make sure to return scalar if only a single element.
    IF N_Elements(result) EQ 1 THEN RETURN, result[0] ELSE RETURN, result
    
END