Blame view

src/idl_misc/coyote_for_Dustemwrap/sharpen.pro 11.3 KB
6db3528a   Jean-Philippe Bernard   adding librairies...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
;+
; NAME:
;       Sharpen
;
; PURPOSE:
;
;        This function sharpens an image using a Laplacian kernel.
;        The final result is color adjusted to match the histogram
;        of the input image.
;
; AUTHOR:
;
;       FANNING SOFTWARE CONSULTING
;       David Fanning, Ph.D.
;       1645 Sheely Drive
;       Fort Collins, CO 80526 USA
;       Phone: 970-221-0438
;       E-mail: david@idlcoyote.com
;       Coyote's Guide to IDL Programming: http://www.idlcoyote.com
;
; CATEGORY:
;
;       Image Processing
;
; CALLING SEQUENCE:
;
;       sharp_image = Sharpen(image)
;
; INPUTS:
;
;       image - The input image to be sharpened. Assumed to be a 2D byte array.
;
; OUTPUTS:
;
;       sharp_image - The sharpened image.
;
; INPUT KEYWORDS:
;
;       KERNEL -- By default the image is convolved with this 3-by-3 Laplacian kernel:
;           [ [-1, -1, -1], [-1, +8, -1], [-1, -1, -1] ].  You can pass in any  kernel
;           of odd width. The filtered image is added back to the original image to provide
;           the sharpening effect.
;
;       DISPLAY -- If this keyword is set a window is opened and the details of the sharpening
;           process are displayed.
;
; OUTPUT KEYWORDS:
;
;       None.
;
; DEPENDENCIES:
;
;       None.
;
; METHOD:
;
;       This function is based on the Laplacian kernel sharpening method on pages 128-131
;       of Digital Image Processing, 2nd Edition, Rafael C. Gonzalez and Richard E. Woods,
;       ISBN 0-20-118075-8.
;
; EXAMPLE:
;
;       There is an example program at the end of this file.
;
; MODIFICATION HISTORY:
;
;       Written by David W. Fanning, January 2003.
;       Updated slightly to use Coyote Library routines. 3 Dec. 2010. DWF.
;       Modified the example to work with cgImage. 29 March 2011. DWF.
;-
;
;******************************************************************************************;
;  Copyright (c) 2008, by Fanning Software Consulting, Inc.                                ;
;  All rights reserved.                                                                    ;
;                                                                                          ;
;  Redistribution and use in source and binary forms, with or without                      ;
;  modification, are permitted provided that the following conditions are met:             ;
;                                                                                          ;
;      * Redistributions of source code must retain the above copyright                    ;
;        notice, this list of conditions and the following disclaimer.                     ;
;      * Redistributions in binary form must reproduce the above copyright                 ;
;        notice, this list of conditions and the following disclaimer in the               ;
;        documentation and/or other materials provided with the distribution.              ;
;      * Neither the name of Fanning Software Consulting, Inc. nor the names of its        ;
;        contributors may be used to endorse or promote products derived from this         ;
;        software without specific prior written permission.                               ;
;                                                                                          ;
;  THIS SOFTWARE IS PROVIDED BY FANNING SOFTWARE CONSULTING, INC. ''AS IS'' AND ANY        ;
;  EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES    ;
;  OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT     ;
;  SHALL FANNING SOFTWARE CONSULTING, INC. BE LIABLE FOR ANY DIRECT, INDIRECT,             ;
;  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED    ;
;  TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;         ;
;  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND             ;
;  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT              ;
;  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS           ;
;  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.                            ;
;******************************************************************************************;

FUNCTION Sharpen_HistoMatch, image, histogram_to_match

   ; Error handling.

Catch, theError
IF theError NE 0 THEN BEGIN
   Catch, /Cancel

      ; Get the call stack and the calling routine's name.

   Help, Calls=callStack
   IF Float(!Version.Release) GE 5.2 THEN $
      callingRoutine = (StrSplit(StrCompress(callStack[1])," ", /Extract))[0] ELSE $
      callingRoutine = (Str_Sep(StrCompress(callStack[1])," "))[0]

      ; Print a traceback.

   Help, /Last_Message, Output=traceback
   Print,''
   Print, 'Traceback Report from ' + StrUpCase(callingRoutine) + ':'
   Print, ''
   FOR j=0,N_Elements(traceback)-1 DO Print, "     " + traceback[j]

   IF N_Elements(image) NE 0 THEN RETURN, image ELSE RETURN, -1L
ENDIF

   ; We require two input parameters.

IF N_Params() NE 2 THEN Message, 'Two arguments required. Please read the program documentation.'

   ; Must have 2D image array.

IF Size(image, /N_Dimensions) NE 2 THEN Message, 'Image argument must be 2D. Returning.'

   ; Is the histogram_to_match variable a 1D or 2D array? Branch accordingly.

CASE Size(histogram_to_match, /N_Dimensions) OF
   1: BEGIN
      IF N_Elements(histogram_to_match) NE 256 THEN $
         Message, 'Histogram to match has incorrect size. Returning.'
      match_histogram =    histogram_to_match
      END
   2: match_histogram = Histogram(Byte(histogram_to_match), Min=0, Max=255, Binsize=1)
   ELSE: Message, 'Histogram to match has incorrect number of dimensions. Returning.'
ENDCASE

   ; Calculate the histogram of the input image.

h = Histogram(Byte(image), Binsize=1, Min=0, Max=255)

   ; Make sure the two histograms have the same number of pixels. This will
   ; be a problem if the two images are different sizes, you are matching a
   ; histogram from an image subset, etc.

totalPixels = Float(N_Elements(image))
totalHistogramPixels = Float(Total(match_histogram))

IF totalPixels NE totalHistogramPixels THEN $
   factor = totalPixels / totalHistogramPixels ELSE $
   factor = 1.0

match_histogram = match_histogram * factor

   ; Find a mapping from the input pixels to the transformation function s.

s = FltArr(256)
FOR k=0,255 DO BEGIN
  s[k] = Total(h(0:k) / totalPixels)
ENDFOR

   ; Find a mapping from input histogram to the transformation function v.

v = FltArr(256)
FOR q=0,255 DO BEGIN
  v[q] = Total(match_histogram(0:q) / Total(match_histogram))
ENDFOR

   ; Find probablitly density function z from v and s.

z = BytArr(256)
FOR j=0,255 DO BEGIN
   i = Where(v LT s[j], count)
   IF count GT 0 THEN z[j] = (Reverse(i))[0] ELSE z[j]=0
ENDFOR

   ; Create the matched image.

matchedImage = z[Byte(image)]
RETURN, matchedImage
END
; ----------------------------------------------------------------------------



FUNCTION Sharpen, image, Display=display, Kernel=kernel

   ; Error handling.

Catch, theError
IF theError NE 0 THEN BEGIN
   Catch, /Cancel

      ; Get the call stack and the calling routine's name.

   Help, Calls=callStack
   IF Float(!Version.Release) GE 5.2 THEN $
      callingRoutine = (StrSplit(StrCompress(callStack[1])," ", /Extract))[0] ELSE $
      callingRoutine = (Str_Sep(StrCompress(callStack[1])," "))[0]

      ; Print a traceback.

   Help, /Last_Message, Output=traceback
   Print,''
   Print, 'Traceback Report from ' + StrUpCase(callingRoutine) + ':'
   Print, ''
   FOR j=0,N_Elements(traceback)-1 DO Print, "     " + traceback[j]

   IF N_Elements(image) NE 0 THEN RETURN, image ELSE RETURN, -1L
ENDIF

   ; If an image is not provided. Issue an error message.

IF N_Elements(image) EQ 0 THEN $
   Message, 'A 2D image is required as an argument.'

IF Size(image, /N_Dimensions) NE 2 THEN Message, 'Image must be a 2D array in this program.'

   ; Resize the image, if required.

previewSize = 512
wxsize = previewSize
wysize = previewSize

   ; Set up the convolution kernel for Laplacian filtering.

IF N_Elements(kernel) EQ 0 THEN BEGIN
   k = Replicate(-1, 3, 3)
   k[1,1] = 8
ENDIF ELSE BEGIN
   s = Size(kernel, /Dimensions)
   IF s[0] MOD 2 NE 1 THEN Message, 'Kernel must be an odd width.'
   k = kernel
ENDELSE

   ; Are we doing a display?

IF Keyword_Set(display) THEN BEGIN
   s = Size(image, /Dimensions)
   xsize = s[0]
   ysize = s[1]
   needresize = 1
   IF xsize NE ysize THEN BEGIN
      needresize = 1
      aspect = Float(ysize) / xsize
      IF aspect LT 1 THEN BEGIN
         wxsize = previewSize
         wysize = (previewSize * aspect) < previewSize
      ENDIF ELSE BEGIN
         wysize = previewSize
         wxsize = (previewSize / aspect) < previewSize
      ENDELSE
   ENDIF

   Window, /Free, XSize=2*wxsize, YSize=2*wysize, Title='Image Sharpening-Laplacian'

ENDIF ELSE needresize = 0

   ; Need a resize?

IF needresize THEN thisImage = Byte(Congrid(image, wxsize, wysize)) ELSE $
   thisImage = image

   ; Display the original image.

IF Keyword_Set(display) THEN BEGIN $
   cgImage, thisImage, 0, 0, /TV
   XYOUTS, wxsize/2, 10,  /Device, 'Original Image', Font=0, $
      Alignment=0.5, Color=cgColor('red6')
ENDIF

   ; Create the Laplacian filtered image.

filteredImage = Convol(Float(thisImage), k, Center=1, /Edge_Truncate, /NAN)

   ; Display the filtered image.

IF Keyword_Set(display) THEN BEGIN
   fimage = Convol(thisImage, k, Center=1, /Edge_Truncate, /NAN)
   cgImage, fimage, wxsize, wysize, /TV
   XYOUTS, (2*wxsize/4)*3, wysize + 10, /Device, 'Filtered Image', Font=0, $
      Alignment=0.5, Color=cgColor('red6')
ENDIF

   ; Scale the Laplacian filtered image. Note conversion of
   ; image to integer values and use of 255 as a FLOAT value.

filteredImage = filteredImage - (Min(filteredImage))
filteredImage = filteredImage * (255./Max(filteredImage))
IF Keyword_Set(display) THEN BEGIN
   cgImage, filteredImage, 0, wysize, /TV
   XYOUTS, wxsize/2, wysize + 10, /Device, 'Scaled Filter', Font=0, $
      Alignment=0.5, Color=cgColor('red6')
ENDIF

   ; Create the sharpened image by adding the Laplacian filtered image
   ; back to the original image and re-scaling.

sharpened = thisImage + filteredImage
sharpened = sharpened - (Min(sharpened))
sharpened = sharpened * (255./Max(sharpened))

   ; Adjust the sharpened image to match the histogram of the original.

adjusted = Sharpen_HistoMatch(sharpened, image)

   ; Display the adjusted image.

IF Keyword_Set(display) THEN BEGIN
   cgImage, BytScl(adjusted), wxsize, 0, /TV
   XYOUTS, (2*wxsize/4)*3, 10, /Device, 'Sharpened Image', Font=0, $
      Alignment=0.5, Color=cgColor('red6')
ENDIF

RETURN, adjusted
END


PRO Example

image = cgDemoData(13)
s = Size(image, /Dimensions)
LoadCT, 0, /Silent
Window, /Free, XSize=s[0]*2, YSize=s[1], Title='Image Sharpening'
cgImage, image, 0, /TV
XYOuts, 0.25, 0.1, /Normal, Alignment=0.5, 'Original Image', Font=0, Color=cgColor('red6')
cgImage, Sharpen(image), 1, /NoErase, /TV
XYOuts, 0.75, 0.1, /Normal, Alignment=0.5, 'Sharpened Image', Font=0, Color=cgColor('red6')
END