Blame view

test_plot.py 17.5 KB
bb489272   Jalabert   initial commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# -*- coding: utf-8 -*-
"""
Created on Sun Jul 17 14:31:57 2022

@author: frede
"""

import main_program as mp
from astropy.table import Table
import four_levels_model as four_lvl
import matplotlib.pyplot as plt
import numpy as np

'''================================ initialization of parameters ================================'''

filename = './converted/kp00_30000.txt'
star_radius = 5
t_gas = 500
n_e = 1.6
n_c = 54
parsec = 6.5e-8
fc_pah = 0.1
ISRF = False

# test3 = mp.HeatingGas(filename, star_radius, t_gas, n_e, n_c, parsec, fc_pah, ISRF)
# test3.parameters()
# test4 = mp.HeatingGas(filename, star_radius, t_gas, n_e, n_c, parsec, fc_pah, ISRF)
# test4.parameters()

''' parameter '''
distance_list = np.array([parsec])
for j in range(2,1002,1):
    d = distance_list[0]
    distance_list = np.append(distance_list, j * d) #in parsec

test = four_lvl.HeatingGas(filename, star_radius, t_gas, n_e, n_c, parsec, fc_pah, ISRF)
test.parameters()

# calculus=0
# for i in distance_list:
#     test = four_lvl.HeatingGas(filename, star_radius, t_gas, n_e, n_c, i, fc_pah, ISRF)
#     test.parameters()
#     calculus += test.total_gas_heating*1e-7/(test.g_0 * test.heating_efficiency * 0.1)

# print('value = ',calculus/len(distance_list))    

'''================================ plots ================================'''  

# ''' intensity per wavelength '''
# plt.figure()
# plt.xlim([0,1500])
# plt.plot(test.wavelength,test.wavelength_intensity*1e-3,'k')
# plt.ylabel('intensity spectrum (W m$^{-2}$ sr$^{-1}$ nm$^{-1}$)')
# plt.xlabel('wavelength (nm)')

''' average of 3 sizes categories of pah of photoabsorption sigma 
and photoionization sigma_ion cross sections per C atom of pahs
as functions of photon energy in eV'''

''' conversion from mb/C atom to cm²/C atom '''
test.pah_cross_a = test.pah_cross_a*1e-18
test.pah_cross_n = test.pah_cross_n*1e-18
test.pah_cross_c = test.pah_cross_c*1e-18
test.pah_cross_dc = test.pah_cross_dc*1e-18

''' small n_c '''
test_small_n_c_1 = four_lvl.HeatingGas(filename, star_radius, t_gas, n_e, 32, parsec, fc_pah, ISRF)
test_small_n_c_2 = four_lvl.HeatingGas(filename, star_radius, t_gas, n_e, 36, parsec, fc_pah, ISRF)
test_small_n_c_3 = four_lvl.HeatingGas(filename, star_radius, t_gas, n_e, 38, parsec, fc_pah, ISRF)

test_small_n_c_1.parameters()
test_small_n_c_2.parameters()
test_small_n_c_3.parameters()

''' medium n_c '''
test_medium_n_c_1 = four_lvl.HeatingGas(filename, star_radius, t_gas, n_e, 40, parsec, fc_pah, ISRF)
test_medium_n_c_2 = four_lvl.HeatingGas(filename, star_radius, t_gas, n_e, 42, parsec, fc_pah, ISRF)

test_medium_n_c_1.parameters()
test_medium_n_c_2.parameters()

''' large n_c '''
test_large_n_c_1 = four_lvl.HeatingGas(filename, star_radius, t_gas, n_e, 48, parsec, fc_pah, ISRF)
test_large_n_c_2 = four_lvl.HeatingGas(filename, star_radius, t_gas, n_e, 54, parsec, fc_pah, ISRF)
test_large_n_c_3 = four_lvl.HeatingGas(filename, star_radius, t_gas, n_e, 66, parsec, fc_pah, ISRF)

test_large_n_c_1.parameters()
test_large_n_c_2.parameters()
test_large_n_c_3.parameters()

''' average of first and second photoionization yield '''
yield_of_first_photoionization = (test_small_n_c_1.yield_of_first_photoionization +\
                                  test_small_n_c_2.yield_of_first_photoionization +\
                                  test_small_n_c_3.yield_of_first_photoionization +\
                                  test_medium_n_c_1.yield_of_first_photoionization +\
                                2*test_medium_n_c_2.yield_of_first_photoionization +\
                                  test_large_n_c_1.yield_of_first_photoionization +\
                                  test_large_n_c_2.yield_of_first_photoionization +\
                                  test_large_n_c_3.yield_of_first_photoionization )/9
yield_of_second_photoionization = (test_small_n_c_1.yield_of_second_photoionization +\
                                    test_small_n_c_2.yield_of_second_photoionization +\
                                    test_small_n_c_3.yield_of_second_photoionization +\
                                    test_medium_n_c_1.yield_of_second_photoionization +\
                                  2*test_medium_n_c_2.yield_of_second_photoionization +\
                                    test_large_n_c_1.yield_of_second_photoionization +\
                                    test_large_n_c_2.yield_of_second_photoionization +\
                                    test_large_n_c_3.yield_of_second_photoionization )/9

''' average of ionization cross-section for the cases of neutral molecules, and 
cations '''
ionization_cross_a = test.pah_cross_a * test.detachment_yield
ionization_cross_n = test.pah_cross_n * yield_of_first_photoionization
ionization_cross_c = test.pah_cross_c * yield_of_second_photoionization
#ionization_cross_dc is too small to be traced

''' average of energy per cross-section for the cases of neutral molecules, 
cations and dications '''
energy = (test.energy_negative_charged + test.energy_neutral + test.energy_charged + test.energy_double_charged)/4

''' plot sigma and sigma_ion in cm²/(C atom) as a function of photon energy in eV
for the cases of neutral, charged and double charged molecules '''
plt.figure(figsize=(3.57,9.0))

plt.subplot(4,1,1)
plt.plot(test.energy_negative_charged,test.pah_cross_a,'k', label='$\sigma(E,Z)$')
plt.plot(energy,ionization_cross_a,'k',ls='--', label='$\sigma_{ion}(E,Z)$')
plt.title('Z=-1', fontsize = 10)
plt.legend(fontsize = 8)

plt.subplot(4,1,2)
plt.plot(test.energy_neutral,test.pah_cross_n,'k')
plt.plot(energy,ionization_cross_n,'k',ls='--')
plt.title('Z=0', fontsize = 10)

plt.subplot(4,1,3)
plt.plot(test.energy_neutral,test.pah_cross_c,'k')
plt.plot(energy,ionization_cross_c,'k',ls='--') 
plt.title('Z=1', fontsize = 10)
plt.ylabel('Cross sections (cm$^2$/C)')

plt.subplot(4,1,4)
plt.plot(test.energy_neutral,test.pah_cross_dc,'k') 
plt.title('Z=2', fontsize = 10)
plt.xlabel('Photon energy (eV)')

plt.subplots_adjust(hspace = 0.35)
plt.savefig('cross_ioni_section_categories.pdf', bbox_inches='tight')
if ISRF == False:

    ''' evolution of the different populations of neutral pah molecules, 
    # cations and dications as a function of the distance to the star considered '''
    
    ''' parameter '''
    # population_frac3 = np.zeros([1, len(distance_list)])
    # population_frac4 = np.zeros([4, len(distance_list)])
    
    ''' indentation '''
    # j=0
    # gamma_list3 = []
    # gamma_list4 = []
    # for i in distance_list:
    #     population_plot_test3 = mp.HeatingGas(filename, star_radius, t_gas, n_e, n_c, i, fc_pah, ISRF)
    #     population_plot_test3.parameters()
    #     population_frac3[0,j] =(population_plot_test3.frac_charged +\
    #                             population_plot_test3.frac_double_charged)/\
    #                           (population_plot_test3.frac_neutral +\
    #                             population_plot_test3.frac_charged +\
    #                             population_plot_test3.frac_double_charged)
    #     # population_frac3[0,j] = population_plot_test3.frac_neutral
    #     # population_frac3[1,j] = population_plot_test3.frac_charged
    #     # population_frac3[2,j] = population_plot_test3.frac_double_charged
    #     gamma_list3.append(population_plot_test3.gamma)         
                         
        # population_plot_test4 = four_lvl.HeatingGas(filename, star_radius, t_gas, n_e, n_c, i, fc_pah, ISRF)
        # population_plot_test4.parameters()
        # population_frac4[0,para] =(population_plot_test4.frac_anion +\
        #                         population_plot_test4.frac_charged +\
        #                         population_plot_test4.frac_double_charged)/\
        #                       (population_plot_test4.frac_anion +\
        #                         population_plot_test4.frac_neutral +\
        #                         population_plot_test4.frac_charged +\
        #                         population_plot_test4.frac_double_charged)
        # population_frac4[0,j] = population_plot_test4.frac_anion
        # population_frac4[1,j] = population_plot_test4.frac_neutral
        # population_frac4[2,j] = population_plot_test4.frac_charged
        # population_frac4[3,j] = population_plot_test4.frac_double_charged
        # gamma_list4.append(population_plot_test4.gamma)
        # j=j+1
    
    ''' population fractions as function of the distance ''' 
    # plt.figure(figsize=(5.90,3.93))
    # plt.plot(gamma_list3,population_frac3[0,:],c='k',label='3 levels model')
    # plt.plot(gamma_list4,population_frac4[0,:],ls='--', c='k',label='4 levels model')
    # plt.xlim([1e1, 1e7])
    # plt.plot(gamma_list3, population_frac3[0,:], color = 'green', label='Z=0, 3 levels model')
    # plt.plot(gamma_list3, population_frac3[1,:], color = 'blue', label='Z=1, 3 levels model')
    # plt.plot(gamma_list3, population_frac3[2,:], color = 'red', label='Z=2, 3 levels model')
    # plt.plot(gamma_list4, population_frac4[0,:], ls='--', color = 'k', label='Z=-1, 4 levels model')
    # plt.plot(gamma_list4, population_frac4[1,:], ls='--', color = 'green', label='Z=0, 4 levels model')
    # plt.plot(gamma_list4, population_frac4[2,:], ls='--', color = 'k', label='Z=1, 4 levels model')
    # plt.plot(gamma_list4, population_frac4[3,:], ls='--', color = 'red', label='Z=2, 4 levels model')
    # plt.plot(gamma_list3, population_frac3[0,:]+population_frac3[1,:]+population_frac3[2,:],'blue')
    # plt.plot(gamma_list4, population_frac4[0,:]+population_frac4[1,:]+population_frac4[2,:]+population_frac4[3,:],'darkblue')
    # plt.xlabel('$\gamma$ ($G_0\sqrt{T}/n_e$)')
    # plt.ylabel('population fraction R$_i$')
    # plt.legend()
    
    ''' photoelectric efficiencies with the pah heating model ''' 
    
    # gamma_list_T_one3 = []
    # heating_efficiency_list_T_one3 = []
    
    # gamma_list_T_two3 = []
    # heating_efficiency_list_T_two3 = []
    
    # gamma_list_T_one4 = []
    # heating_efficiency_list_T_one4 = []
      
    # gamma_list_T_two4 = []
    # heating_efficiency_list_T_two4 = []
    
    # ratio1_1 = []
    # ratio2_1 = []
    # gamma_mean1_1 = []
    # gamma_mean2_1 = []
    # gamma_list_1 = []
    # j = 0
    # for i in distance_list:
    #     j = j+1
    #     if j%100 == 0:
    #         print('Progression à {}'.format(j/10),'%')
    #         print('')
        # test_for_efficiencies_T_one3 = mp.HeatingGas(filename, star_radius, 100, n_e, 54, i, fc_pah, ISRF)
        # test_for_efficiencies_T_one3.parameters()
        # gamma_list_T_one3.append(test_for_efficiencies_T_one3.gamma)
        # heating_efficiency_list_T_one3.append(test_for_efficiencies_T_one3.heating_efficiency)
    
        # test_for_efficiencies_T_two3 = mp.HeatingGas(filename, star_radius, 1000, n_e, 54, i, fc_pah, ISRF)
        # test_for_efficiencies_T_two3.parameters()
        # gamma_list_T_two3.append(test_for_efficiencies_T_two3.gamma)
        # heating_efficiency_list_T_two3.append(test_for_efficiencies_T_two3.heating_efficiency)
    
        # test_for_efficiencies_T_one4 = four_lvl.HeatingGas(filename, star_radius, 100, n_e, n_c, i, fc_pah, ISRF)
        # test_for_efficiencies_T_one4.parameters()
        # gamma_list_T_one4.append(test_for_efficiencies_T_one4.gamma)
        # heating_efficiency_list_T_one4.append(test_for_efficiencies_T_one4.heating_efficiency)   
        
        # test_for_efficiencies_T_two4 = four_lvl.HeatingGas(filename, star_radius, 1000, n_e, n_c, i, fc_pah, ISRF)
        # test_for_efficiencies_T_two4.parameters()
        # gamma_list_T_two4.append(test_for_efficiencies_T_two4.gamma)
        # heating_efficiency_list_T_two4.append(test_for_efficiencies_T_two4.heating_efficiency)
 
    #         ratio1_1.append( (test_for_efficiencies_T_one3.heating_efficiency/test_for_efficiencies_T_one4.heating_efficiency)*100)
    #         ratio2_1.append( (test_for_efficiencies_T_two3.heating_efficiency/test_for_efficiencies_T_two4.heating_efficiency)*100)
    #         gamma_mean1_1.append( (test_for_efficiencies_T_one3.gamma + test_for_efficiencies_T_one4.gamma)/2 )
    #         gamma_mean2_1.append( (test_for_efficiencies_T_two3.gamma + test_for_efficiencies_T_two4.gamma)/2 )
    
    # plt.figure()
    # plt.xlim([1e1, 1e6])
    # plt.loglog(gamma_mean1_1, ratio1_1, 'blue', label='ratio of 3 and 4 levels model $\epsilon_{PAH}$ (T = 100K) ')
    # plt.loglog(gamma_mean2_1, ratio2_1, 'red', ls='--' , label='ratio of 3 and 4 levels model $\epsilon_{PAH}$ (T = 1000K)')
    # plt.loglog(gamma_list_T_one3, heating_efficiency_list_T_one3, 'blue', label='$\epsilon_{PAH}$ (T = 100K) 3 levels model')
    # plt.loglog(gamma_list_T_two3, heating_efficiency_list_T_two3, 'red', ls='--' , label='$\epsilon_{PAH}$ (T = 1000K) 3 levels model')
    # plt.loglog(gamma_list_T_one4, heating_efficiency_list_T_one4, 'darkblue', label='$\epsilon_{PAH}$ (T = 100K) 4 levels model')
    # plt.loglog(gamma_list_T_two4, heating_efficiency_list_T_two4, 'darkred', ls='--' , label='$\epsilon_{PAH}$ (T = 1000K) 4 levels model')
    # plt.xlabel('$\gamma(G_0\sqrt{T}/n_e)$')
    # plt.ylabel('$\epsilon_{PAH}$')
    # plt.ylabel('$\epsilon_{PAH, 3lvlmod}$ / $\epsilon_{PAH, 4lvlmod}$ (%)')
    # plt.legend()
    
    # ''' Total photoelectric heating rates of the gas '''
    
    # gamma_list_fc_one3 = []
    # total_gas_heating_per_rf_list_fc_one3 = []
    
    # gamma_list_fc_two3 = []
    # total_gas_heating_per_rf_list_fc_two3 = []
    
    # gamma_list_fc_one4 = []
    # total_gas_heating_per_rf_list_fc_one4 = []
    
    # gamma_list_fc_two4 = []
    # total_gas_heating_per_rf_list_fc_two4 = []
    
    # ratio1_2 = []
    # ratio2_2 = []
    # gamma_mean1_2 = []
    # gamma_mean2_2 = []
    # Table_list_g_fc5 = []
    # Table_list_Gpg0_fc5 = []
    
    # Table_list_g_fc10 = []
    # Table_list_Gpg0_fc10 = []
    
    # for i in distance_list:
    #     test_for_total_heating_rates_fc_one3 = mp.HeatingGas(filename, star_radius, t_gas, n_e, n_c, i, 0.05, ISRF)
    #     test_for_total_heating_rates_fc_one3.parameters()
    #     gamma_list_fc_one3.append(test_for_total_heating_rates_fc_one3.gamma)
    #     total_gas_heating_per_rf_list_fc_one3.append( (test_for_total_heating_rates_fc_one3.total_gas_heating*1e-7) / test_for_total_heating_rates_fc_one3.g_0)
        
    #     test_for_total_heating_rates_fc_two3 = mp.HeatingGas(filename, star_radius, t_gas, n_e, n_c, i, 0.1, ISRF)
    #     test_for_total_heating_rates_fc_two3.parameters()
    #     gamma_list_fc_two3.append(test_for_total_heating_rates_fc_two3.gamma)
    #     total_gas_heating_per_rf_list_fc_two3.append( (test_for_total_heating_rates_fc_two3.total_gas_heating*1e-7) / test_for_total_heating_rates_fc_two3.g_0)
        
        # test_for_total_heating_rates_fc_one4 = four_lvl.HeatingGas(filename, star_radius, 500, n_e, 54, i, 0.05, ISRF)
        # test_for_total_heating_rates_fc_one4.parameters()
        # gamma_list_fc_one4.append(test_for_total_heating_rates_fc_one4.gamma)
        # total_gas_heating_per_rf_list_fc_one4.append( (test_for_total_heating_rates_fc_one4.total_gas_heating*1e-7) / test_for_total_heating_rates_fc_one4.g_0)
        
        # test_for_total_heating_rates_fc_two4 = four_lvl.HeatingGas(filename, star_radius, 500, n_e, 54, i, 0.1, ISRF)
        # test_for_total_heating_rates_fc_two4.parameters()
        # gamma_list_fc_two4.append(test_for_total_heating_rates_fc_two4.gamma)
        # total_gas_heating_per_rf_list_fc_two4.append( (test_for_total_heating_rates_fc_two4.total_gas_heating*1e-7) / test_for_total_heating_rates_fc_two4.g_0)

    #     ratio1_2.append( ( ( (test_for_total_heating_rates_fc_one3.total_gas_heating*1e-7) /\
    #                           test_for_total_heating_rates_fc_one3.g_0) /\
    #                        ( (test_for_total_heating_rates_fc_one4.total_gas_heating*1e-7) /\
    #                           test_for_total_heating_rates_fc_one4.g_0) )*100 )
    #     ratio2_2.append( ( ( (test_for_total_heating_rates_fc_two3.total_gas_heating*1e-7) /\
    #                           test_for_total_heating_rates_fc_two3.g_0) /\
    #                        ( (test_for_total_heating_rates_fc_two4.total_gas_heating*1e-7) /\
    #                           test_for_total_heating_rates_fc_two4.g_0) )*100 )
    #     gamma_mean1_2.append( (test_for_total_heating_rates_fc_one3.gamma+test_for_total_heating_rates_fc_one4.gamma)/2 )
    #     gamma_mean2_2.append( (test_for_total_heating_rates_fc_two3.gamma+test_for_total_heating_rates_fc_two4.gamma)/2 )
        
    # plt.figure()
    # plt.xlim([1e1, 1e7])
    # plt.loglog(gamma_mean1_2,ratio1_2, 'red', label='ratio of 3 and 4 levels model $\Gamma_{tot}$ (5% of C in PAHs)')
    # plt.loglog(gamma_mean2_2,ratio2_2, 'blue', label='ratio of 3 and 4 levels model $\Gamma_{tot}$ (10% of C in PAHs)')
    # plt.loglog(gamma_list_fc_one3, total_gas_heating_per_rf_list_fc_one3, c='red', label='This work (5% of C in PAHs) 3 levels model')
    # plt.loglog(gamma_list_fc_two3, total_gas_heating_per_rf_list_fc_two3,ls='--', c='blue', label='This work (10% of C in PAHs) 3 levels model')
    # plt.loglog(gamma_list_fc_one4, total_gas_heating_per_rf_list_fc_one4, c='darkred', label='This work (5% of C in PAHs) 4 levels model')
    # plt.loglog(gamma_list_fc_two4, total_gas_heating_per_rf_list_fc_two4,ls='--', c='darkblue', label='This work (10% of C in PAHs) 4 levels model')
    # plt.xlabel('$\gamma(G_0\sqrt{T}/n_e)$')
    # # plt.ylabel('$\Gamma_{tot}$ (W H$^{-1}$ G$_0^{-1}$)')
    # plt.ylabel('$\Gamma_{tot, 3lvlmod}$ / $\Gamma_{tot, 4lvlmod}$ (%)')
    # plt.legend()
    
    # Table_values.append(heating_efficiency_list_T_one4)
    # Table_list_g_fc5 = gamma_list_fc_one4[::-1]
    # Table_list_Gpg0_fc5 = total_gas_heating_per_rf_list_fc_one4[::-1]
    
    # Table_list_g_fc10 = gamma_list_fc_two4[::-1]
    # Table_list_Gpg0_fc10 = total_gas_heating_per_rf_list_fc_two4[::-1]