2.4.1
spase://CNES/NumericalData/CDPP-AMDA/ULYSSES/SWOOPS/ulys-bai-mom
sw ions
2012-03-06T21:18:14Z
The proton temperature has been estimated in two different ways, one of which will sometimes lead to an overestimate of the temperature and one of which will sometimes lead to an underestimate. T-large is the integral of the distribution in three-dimensional velocity space over all energy channels and angle bins that are statistically above noise. The criterion for noise determination is based upon the estimation of the total contribution from a shell that is spherically symmetric in velocity space. T-large has the drawback that at times when the solar wind is cold the angular responses of the instrument channels are as wide or wider than the beam, and the temperature is overestimated. T-small is estimated by summing over angle the observations at a fixed energy. The moments of the resulting one dimensional plasma spectrum are then summed and the resulting RR (radial) component of the temperature tensor is used as the estimate of proton temperature. Additionally, to avoid contamination from alpha particles, no channels further in velocity space from the proton peak than the minimum in flux between the proton and alpha particles peaks are used in the T-small estimate. T-large and T-small will generally bracket the true temperature. However, for very cold plasma, T-small may not be a true minimum.
spase://SMWG/Person/Elena.Budnik
GeneralContact
Readme file at SPDF
ftp://spdf.gsfc.nasa.gov/pub/data/ulysses/merged/ulymgd.txt
SWOOPS data users' guide
ftp://spdf.gsfc.nasa.gov/pub/data/ulysses/plasma/swoops/ion/swoops_ion_users_guide_update_20030214.txt
spase://SMWG/Repository/CDPP/AMDA
Online
Open
CDPP/AMDA HAPI Server
https://amda.irap.omp.eu/service/hapi
ulys-bai-mom
Web Service to this product using the HAPI interface.
CSV
Thank you for acknowledging the use of AMDA in publications with wording like "Data analysis was performed with the AMDA science analysis system provided by the Centre de Données de la Physique des Plasmas (CDPP) supported by CNRS, CNES, Observatoire de Paris and Université Paul Sabatier, Toulouse". See the Rules of the road at https://amda.cdpp.eu/help/policy.html . Please acknowledge the Data Providers.
spase://SMWG/Repository/CDPP/AMDA
Online
Open
CDPP/AMDA Web application
https://amda.cdpp.eu
Access to Data via CDPP/AMDA Web application.
CSV
VOTable
CDF
PNG
Thank you for acknowledging the use of AMDA in publications with wording like "Data analysis was performed with the AMDA science analysis system provided by the Centre de Données de la Physique des Plasmas (CDPP) supported by CNRS, CNES, Observatoire de Paris and Université Paul Sabatier, Toulouse". See the Rules of the road at https://amda.cdpp.eu/help/policy.html . Please acknowledge the Data Providers.
CDAWeb
UY_M0_BAI
spase://CNES/Instrument/CDPP-AMDA/Ulysses/SWOOPS
ThermalPlasma
1990-11-18T00:33:48Z
2009-06-30T15:54:12Z
PT4M
PT8M
Heliosphere
density h+
n_p_ulys
Solar wind proton plasma density
phys.density;phys.atmol.ionStage
cm-3
TimeSeries
Proton
NumberDensity
density he++
n_a_ulys
Solar wind alpha particle plasma density
phys.density;phys.atmol.ionStage
cm-3
TimeSeries
AlphaParticle
Average
NumberDensity
v_rtn
v_ulys_rtn
Hourly averaged solar wind plasma flow speed
phys.veloc;phys.atmol.ionStage
km/s
Spherical
RTN
TimeSeries
3
vr
1
v_ulys_rtn(0)
vt
2
v_ulys_rtn(1)
vn
3
v_ulys_rtn(2)
Proton
Average
FlowSpeed
temperature h+
tp_ulys
solar wind plasma temperature
phys.temperature;phys.atmol.ionStage
eV
TimeSeries
2
t_large
1
tp_ulys(0)
t_small
2
tp_ulys(1)
Proton
Temperature