2.2.6
spase://CDPP/NumericalData/AMDA/Rosetta/Ephemeris/ros-orb-cruise
cruise
2015-10-16T15:25:29Z
HCI: Heliocentric Inertial Frame -
All vectors are geometric: no aberration corrections are used.
The solar rotation axis is the primary vector: the Z axis points
in the solar north direction.
The solar ascending node on the ecliptic of J2000 forms the X axis.
The Y axis is Z cross X, completing the right-handed reference frame.
HEE : Heliocentric Earth Ecliptic Frame -
All vectors are geometric: no aberration corrections are used.
The position of the Earth relative to the Sun is the primary vector:
the X axis points from the Sun to the Earth.
The northern surface normal to the mean ecliptic of date is the
secondary vector: the Z axis is the component of this vector
orthogonal to the X axis.
The Y axis is Z cross X, completing the right-handed reference frame.
HEEQ : Heliocentric Earth Equatorial Frame -
All vectors are geometric: no aberration corrections are used.
The solar rotation axis is the primary vector: the Z axis points
in the solar north direction.
The position of the Sun relative to the Earth is the secondary
vector: the X axis is the component of this position vector
orthogonal to the Z axis.
The Y axis is Z cross X, completing the right-handed reference frame.
spase://SMWG/Person/Elena.Budnik
MetadataContact
spase://SMWG/Repository/CDPP/AMDA
Online
Open
http://amda.cdpp.eu
NetCDF
PSA
spase://CDPP/Instrument/AMDA/Rosetta/Ephemeris
Ephemeris
2004-03-03T00:00:00Z
2014-08-04T00:00:00Z
PT1H
xyz_hee
ros_xyz_hee
AU
3
x
0
ros_xyz_hee(0)
y
1
ros_xyz_hee(1)
z
2
ros_xyz_hee(2)
Positional
xyz_heeq
ros_xyz_heeq
pos.bodyrc;instr.obsty
km
Cartesian
HEEQ
TimeSeries
3
x
0
ros_xyz_heeq(0)
y
1
ros_xyz_heeq(1)
z
2
ros_xyz_heeq(2)
Positional
xyz_hci
ros_xyz_hci
pos.bodyrc;instr.obsty
km
Cartesian
HCI
TimeSeries
3
x
0
ros_xyz_hci(0)
y
1
ros_xyz_hci(1)
z
2
ros_xyz_hci(2)
Positional
distance ros-sun
r_sun_ros
AU
TimeSeries