2.3.0 spase://CNES/NumericalData/CDPP-AMDA/Solar_Orbiter/MAG/solo-mag-8s LL (Low Latency) Low Latency Magnetic Field : Not for Publication 10.1026/1234567 2019-11-12T10:48:29Z LL02 : Level 2 Low Latency Data : Not For Publication The MAG Low Latency data are a useful resource but should be used with caution: they contain many artificial signals, are not of a high enough quality to undertake science analysis and results derived from them should not submitted for publication. Routine processing of the MAG data on the ground removes the vast majority of these signals but the automated nature of the pipeline at ESA/ESAC means that this cannot be applied to the Low Latency data stream. The MAG team intends to provide a cleaned version of the MAG data in the near future which should be used in preference to the Low Latency data. We also expect to release full science-quality level 2 data products to the ESA archive from September 2020. spase://CDPP/Person/Tim.Horbury PrincipalInvestigator Low Latency Data https://www.cosmos.esa.int/web/solar-orbiter/access-to-solar-orbiter-low-latency-data spase://SMWG/Repository/CNES/CDPP-AMDA Online Open AMDA at CDPP http://amda.cdpp.eu Text AMDA is a science analysis system provided by the Centre de Donnees de la Physique des Plasmas (CDPP) supported by CNRS, CNES, Observatoire de Paris and Universite Paul Sabatier, Toulouse http://soar.esac.esa.int/soar SOLO_LL02_mag spase://CNES/Instrument/CDPP-AMDA/Solar_Orbiter/MAG MagneticField 2018-09-02T00:00:12Z 2025-08-12T23:59:55Z PT8S Heliosphere.Inner Sun.Corona The MAG team has not had the opportunity to assess the reliability of the data processing pipeline for Low Latency flight data, so we cannot vouch for the reliability or accuracy of this processing. In addition, the MAG data contain artificial signals covering a wide range of timescales and magnitudes, none of which are predictable at this time: * MAG heater signal up to 1nT in amplitude, typically lasts one minute and occurs every 10-20 minutes. This is the most visible signature in the data. * Varying spacecraft offsets spacecraft fields can vary over long timescales (weeks or more) by up to several nT. Since these can only be determined after the fact, that are not corrected in the Low Latency data. Some changes can also be rapid, such as those due to solar array movements. * Spacecraft-operated heaters over 50 heaters operate on the spacecraft and switch off and on unpredictably to keep various components within their required temperature range. Their total contribution to the field at the sensor location is around 0.5 nT but variations due to the total field are more common at around the 0.1 nT level. * Thruster firings these occur up to once a day, last up to several minutes, and have amplitudes up to 0.2 nT. * Operation of other instruments fields due to the currents from other instruments, and sharper variations due to mechanism movements, can also be present in the data. The MAG team are still quantifying these fields but the total field due to the operation of the payload is around 0.5 nT. Note that the majority of the power is consumed by remote sensing instruments, which are not operated continuously, so these fields can vary. * Operation of SWA/EAS we have evidence that operation of the electron sensor at the end of the instrument boom introduces signals into the MAG data at the 0.1 nT level but these have not yet been quantified in detail. b_rtn solo_b_rtn_8s phys.magField nT 1e-9>T Cartesian RTN TimeSeries 3 br Component.I 1 solo_b_rtn_8s(0) bt Component.J 2 solo_b_rtn_8s(1) bn Component.K 3 solo_b_rtn_8s(2) Vector Component.I Component.J Component.K Magnetic b_srf solo_b_srf_8s phys.magField nT 1e-9>T Cartesian S/C frame TimeSeries 3 bx Component.I 1 solo_b_srf_8s(0) by Component.J 2 solo_b_srf_8s(1) bz Component.K 3 solo_b_sr_8s(2) Vector Component.I Component.J Component.K Magnetic |b| solo_b_tot_8s Magnetic field magnitude phys.magField nT 1e-9>T TimeSeries 1 phisolo_b_rtn_8s_phiMagnetic field phi anglephys.magFielddegrees1e-9>TTimeSeries1thetasolo_b_rtn_8s_thetaMagnetic field theta anglephys.magFielddegrees1e-9>TTimeSeries1