subroutine chp20 (year,rre,thetr,phir,br,bt,bp,bb,ier) c* c*********************************************************************** c* c*PRO MAGLIB c* c*VER 20.07.07 - V 1.0 c* c*AUT spec. CNES - JC KOSIK - fevrier 2001 c*AUT port. AKKA c* c*ROL Theme : Modeles de champs magnetiques c*ROL Calcul des composantes du champ magnetique apres 2020. c* c*PAR year (I) : annee fractionnaire (>= 2020.) c* c*PAR rre (I) : distance radiale geocentrique (rayons terrestres) c*PAR thetr (I) : colatitude geocentrique (radians) c*PAR phir (I) : longitude geocentrique (radians) c* c*PAR br (O) : composante radiale du champ magnetique (gauss) c*PAR bt (O) : composante tangentielle du champ magnetique le long c*PAR : du meridien positive vers le bas (gauss) c*PAR bp (O) : composante azimuthale du champ magnetique, positive c*PAR : vers l'est (gauss) c* c*PAR bb (O) : module du champ magnetique (gauss) c* c*PAR ier (O) : code de retour c* c*NOT ier : sans objet c* c*NOT common : util, util2 c* c*INF utilise : sans objet c* c*HST version 1.0 - 20.07.07 - Creation c* Coefficients de Schmidt et c* variations seculaires provisoires 2020 c* c*********************************************************************** c* implicit none c c --------------------------------- c*FON Declaration identificateur rcs_id c --------------------------------- c character rcs_id*100 c c -------------------------- c*FON Declaration des parametres c -------------------------- c double precision year,rre,thetr,phir,br,bt,bp,bb integer ier c c ---------------------------------- c*FON Declaration des variables communes c ---------------------------------- c double precision pi,dpi,rad,deg,pid,xmu,rayt c c*COM pi : constante pi (obtenue a partir de acos(-1.)) c*COM dpi : constante 2 * pi c*COM pid : constante pi / 2 c*COM rad : facteur de conversion degres ----> radians c*COM deg : facteur de conversion radians ----> degres c*COM xmu : constante de gravitation terrestre (km**3/sec**2) c*COM rayt : rayon equatorial terrestre (km) c common/util/pi,dpi,rad,deg,pid,xmu,rayt c double precision rgmt c c*COM rgmt : rayon geocentrique terrestre (km) c common/util2/rgmt c c --------------------------------- c*FON Declaration des variables locales c --------------------------------- c integer lg(195),lgt(195) c*LOC lg, lgt : coeeficients apres l'an 2020 c integer kmax c*LOC kmax : nombre de pas de calcul (= 14) c integer l,k,jj,nm,ntot,inc c*LOC l,k,jj,nm,ntot,inc : indices de boucles et de tableaux c double precision gg(14,14),ggt(14,14),hh(14,14),hht(14,14) double precision g(14,14),h(14,14),sh(14,14),fn(14),fm(14) double precision cp(14),sp(14),p(14,14),dp(14,14),const(14,14) double precision f1, f2, tzero, tmold,t,cph,sph,ct,st double precision rrmag,ar,aor,temp,par c*LOC Variables de travail intermediaires c SAVE c c --------------------------------- c*FON Affectation identificateur rcs_id c --------------------------------- c data rcs_id /" >$Id$"/ c c -------------------------- c*FON Affectation des constantes c -------------------------- c c Creation juillet 2020 - coefficients lg et lgt c data lg/ > -294048,-14509,46525,-24996,29820,-29916,16770,-7346,13632, > -23812,-821,12362,2419, > 5257,-5434,9030,8095,2819,863,-1584,-3094,1997,480,-3497, > -2343,3632,477, > 1878,2083,-1407,-1212,-1512,323,135,989,660,655,-191,729,251, > -1215, > 528,-362,-645,135,89,-647,681,806,-767,-515,-82,-169,565,22, > 158,235,64,-22,-72,-272,98,-18,237,97,84,-176,-153,-5, > 128,-211,-117,153,149,137,36,-165,-69,-3,28,50,84,-234, > 29,110,-15,98,-11,-51,-132,-63,11,78,88,4,-93,-14, > -119,96,-19,-62,34,-1,-2,17,36,-9,48,7,-86,-9, > -1,19,-43,14,-34,-24,-1,-38,-88,30,-14,0,-25,25, > 23,-6,-9,-4,3,6,-7,-2,-1,-17,14,-16,-6,-30, > 2,-20,31,-26,-20,-1,-12,5,5,13,14,-12,-18,7, > 1,3,8,5,-2,-3,6,-5,2,1,-9,-11,0,-3, > 5,1,-9,-9,5,6,7,14,-3,-4,8,-13,0,-1, > 8,3,0,-1,4,5,1,5,5,-4,-5,-4,-4,-6 > / c data lgt/ > 57,74,-259,-110,-70,-302,-21,-224,22,-59,60,31,-11, > -120,5,-12,-16,-1,-59,65,52,36,-51,-50,-3,5,0, > -6,25,2,-6,13,30,9,3,-5,-3,0,4,-16,13, > -13,-14,8,0,0,9,10,-1,-2,6,0,6,7,-8, > 1,-2,-5,-11,-8,1,8,3,0,1,-2,-1,6,4, > -2,-1,5,4,-3,3,-4,-1,5,4,0,0,0,0, > 0,0,0,0,0,0,0,0,0,0,0,0,0,0, > 0,0,0,0,0,0,0,0,0,0,0,0,0,0, > 0,0,0,0,0,0,0,0,0,0,0,0,0,0, > 0,0,0,0,0,0,0,0,0,0,0,0,0,0, > 0,0,0,0,0,0,0,0,0,0,0,0,0,0, > 0,0,0,0,0,0,0,0,0,0,0,0,0,0, > 0,0,0,0,0,0,0,0,0,0,0,0,0,0, > 0,0,0,0,0,0,0,0,0,0,0,0,0,0 > / c data kmax /14/ c data f1 /10.d0/, f2 /10.d0/ c data sp(1) /0.d0/ data p(1,1) /1.d0/ data cp(1) /1.d0/ data dp(1,1) /0.d0/ c data tzero /2020.d0/ c data tmold /0.d0/ c data sh(1,1) /0.d0/ c c ****************** c Debut de programme c ****************** c c --------------- c*FON Initialisations c --------------- c ier = 0 c if (sh(1,1) .ne. -1.d0) then sh(1,1) = -1.d0 c c --------------------------------------------------- c*FON Calcul des coefficients de Shmidt et des constantes c --------------------------------------------------- c do 20 k = 1, kmax fn(k) = k do 10 l = 1, k fm(l) = l - 1 const(k,l) = dble((k - 2)**2 - (l - 1)**2) / > dble((2 * k - 3) * (2 * k - 5)) 10 continue 20 continue c do 40 k = 2, kmax sh(k,1) = dble(2 * k - 3) * sh(k-1,1) / dble(k - 1) jj = 2 do 30 l = 2,k sh(k,l) = sh(k,l-1) * dsqrt(dble((k - l + 1) * jj) > / (k + l - 2)) jj = 1 30 continue 40 continue c ntot = 0 do 60 k = 2, kmax c gg(k,1) = dble(lg(ntot+1)) ggt(k,1) = dble(lgt(ntot+1)) c nm = 2 * k - 1 do 50 l = 2, k inc = 2 * l - 2 gg(k,l) = dble(lg(ntot+inc)) ggt(k,l) = dble(lgt(ntot+inc)) hh(k,l) = dble(lg(ntot+inc+1)) hht(k,l) = dble(lgt(ntot+inc+1)) 50 continue c ntot = ntot + nm 60 continue c do 80 k = 2, kmax gg(k,1) = gg(k,1) * sh(k,1) / f1 ggt(k,1) = ggt(k,1) * sh(k,1) / f2 do 70 l = 2, k gg(k,l) = gg(k,l) * sh(k,l) / f1 ggt(k,l) = ggt(k,l) * sh(k,l) / f2 hh(k,l) = hh(k,l) * sh(k,l) / f1 hht(k,l) = hht(k,l) * sh(k,l) / f2 70 continue 80 continue endif c if (year .ne. tmold) then tmold = year t = year - tzero do 100 k = 2, kmax g(k,1) = gg(k,1) + t * ggt(k,1) do 90 l = 2,k g(k,l) = gg(k,l) + t * ggt(k,l) h(k,l) = hh(k,l) + t * hht(k,l) 90 continue c 100 continue c endif c cph = dcos(phir) sph = dsin(phir) c if (thetr .ne. 0.d0) then ct = dcos(thetr) st = dsin(thetr) else ct = 1.0d0 st = 1.d-15 endif sp(2) = sph cp(2) = cph c do 110 k = 3, kmax c sp(k) = sp(2) * cp(k-1) + cp(2) * sp(k-1) cp(k) = cp(2) * cp(k-1) - sp(2) * sp(k-1) c 110 continue rrmag = rre * rayt / rgmt aor = 1.d0 / rrmag ar = aor * aor * aor p(2,1) = ct dp(2,1) = -st p(2,2) = st dp(2,2) = ct c br = -(2.d0 * ar) * (g(2,1) * p(2,1) + p(2,2) > * (g(2,2) * cp(2) + h(2,2) * sp(2))) bt = ar * (g(2,1) * dp(2,1) + dp(2,2) * (g(2,2) > * cp(2) + h(2,2) * sp(2))) bp = ar * (h(2,2) * cp(2) - g(2,2) * sp(2)) * p(2,2) c do 130 k = 3, kmax c ar = aor * ar c do 120 l = 1, k c if (k .eq. l) then p(k,k) = st * p(k-1,k-1) dp(k,k) = st * dp(k-1,k-1) + ct * p(k-1,k-1) else p(k,l) = ct * p(k-1,l) - const(k,l) * p(k-2,l) dp(k,l) = ct * dp(k-1,l) - st * p(k-1,l) - const(k,l) > * dp(k-2,l) endif c par = p(k,l) * ar c if (l .eq. 1) then temp = g(k,l) else temp = g(k,l) * cp(l) + h(k,l) * sp(l) bp = bp - (g(k,l) * sp(l) - h(k,l) * > cp(l)) * fm(l) * par endif br = br - temp * fn(k) * par bt = bt + temp * dp(k,l) * ar c 120 continue c 130 continue c bp = bp / st c c --------------------------------------- c*FON Expression du champ magnetique en gauss c --------------------------------------- c br = br / 100000.d0 bt = bt / 100000.d0 bp = bp / 100000.d0 c bb = dsqrt(br * br + bt * bt + bp * bp) c c **************** c Fin de programme c **************** c return end