
  
 

 

 

 

 

 

 

 

MAGLIB 

 
 

 

MATHEMATICS MANUAL OF MAGLIB LIBRARY 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PLASMA-LO-MAGLIB-00161-CN 

 
Version 1, Revision 0  2000/01/10 

Version 1, Revision 1  2001/11/05 

Version 2, Revision 0  2007/01/01 

Version 3, Revision 0  2010/12/13 

Version 4, Revision 0  2017/02/27 

 



  
 

 

 

 

 

 

 

MAGLIB 

 

Jean-Claude KOSIK 

CNES 

18, avenue Edouard Belin 

31055 Toulouse Cedex, France 

 

 

 



 

 0.1 

 

Table of contents 
 

INTRODUCTION .................................................................................................................... 1 

1. COORDINATE TRANSFORMATIONS ....................................................................... 4 

1.1 THE GEOCENTRIC INERTIAL COORDINATE SYSTEM ............................................................. 4 

1.2 THE GEOCENTRIC TERRESTRIAL SYSTEM ............................................................................ 4 
1.3 THE SOLAR ECLIPTIC COORDINATE SYSTEM ....................................................................... 5 
1.4 THE GEOMAGNETIC OR TILTED DIPOLE COORDINATE SYSTEM ............................................ 7 
1.5 THE SOLAR MAGNETIC COORDINATE SYSTEM .................................................................... 8 
1.6 THE SOLAR MAGNETOSPHERIC COORDINATES .................................................................... 9 

1.7 THE TILT ANGLE T .......................................................................................................... 10 

1.8 THE SOLAR WIND COORDINATE SYSTEM ......................................................................... 10 
1.9 CLASSICAL VERIFICATIONS .............................................................................................. 12 

REFERENCES ......................................................................................................................... 12 

2. BOUNDARIES AND REGIONS ................................................................................... 13 

2.1 INTRODUCTION ................................................................................................................ 13 
2.2 THE RADIATION BELT ...................................................................................................... 14 

2.3 THE PLASMASPHERE ........................................................................................................ 15 
2.4 THE AURORAL OVAL ....................................................................................................... 15 

2.5 THE POLAR CAP ............................................................................................................... 16 
2.6 THE DIFFUSE AURORAL REGION ...................................................................................... 16 
2.7 THE CUSP......................................................................................................................... 17 

2.8 THE NEUTRAL SHEET ...................................................................................................... 17 

2.9 THE PLASMA SHEET ......................................................................................................... 19 
2.10 THE MAGNETOPAUSE ...................................................................................................... 19 
2.11 THE SHABANSKY MAGNETOPAUSE: ................................................................................. 20 

2.12 THE BOW-SHOCK............................................................................................................. 21 
2.13 SIMILARITIES BETWEEN THE EQUATIONS OF THE TWO SURFACES ..................................... 23 

2.14 INTRODUCING THE DISPLACEMENT OF THE BOW-SHOCK ................................................. 24 
2.15 THE MAGNETOSHEATH .................................................................................................... 24 

2.16 THE SOLAR WIND ............................................................................................................ 25 
2.17 THE MAGNETOPAUSE MODEL OF SHABANSKY AND THE FIELD LINE ESCAPE .................... 25 
2.18 THE SHADE OF THE EARTH .............................................................................................. 25 
2.19 THE MAGNETOSPHERE AS A UNIQUE ENVIRONMENT ........................................................ 26 
REFERENCES ......................................................................................................................... 26 

3. DISTANCES TO THE BOUNDARIES ........................................................................ 27 

3.1 INTRODUCTION ................................................................................................................ 27 

3.2 DISTANCES TO THE MAGNETOPAUSE AND THE BOW-SHOCK ........................................... 27 
3.3 DISTANCE TO THE NEUTRAL SHEET ................................................................................. 28 
3.4 DISTANCE TO THE PLASMA SHEET ................................................................................... 29 
3.5 DISTANCE TO THE PLASMAPAUSE .................................................................................... 30 
3.6 DISTANCES, A GENERAL ALGORITHM ............................................................................... 31 

REFERENCES ......................................................................................................................... 31 

4. INTERNAL MAGNETIC FIELD MODELS ............................................................... 32 

4.1 INTRODUCTION ................................................................................................................ 32 



 

 0.2 

4.2 THE SPHERICAL HARMONICS EXPANSION ......................................................................... 32 

4.3 GENERAL EXPRESSION OF THE MAGNETIC FIELD IN SPHERICAL HARMONICS .................... 36 
4.4 THE LAPLACE GAUSS RECURRENT FORMULAE ................................................................. 37 
4.5 THE RECURRENT FORMULAE IN THE SOFTWARE ............................................................... 41 

4.6 A NEW COMPUTER CODE FOR THE CALCULATION OF THE GEOMAGNETIC FIELD ............... 42 
4.7 THE THREE COMPONENTS OF THE GEOMAGNETIC FIELD ................................................... 44 
4.8 THE TILTED DIPOLE .......................................................................................................... 45 
4.9 THE ECCENTRIC DIPOLE ................................................................................................... 47 
4.10 CALCULATION OF THE MAGNETIC FIELD COMPONENTS NEAR THE SURFACE OF THE EARTH52 

4.11 DIPOLE MAGNETIC FIELD IN CARTESIAN COORDINATES ................................................... 54 
TABLES OF INTERNAL MAGNETIC FIELD COEFFICIENTS ......................................... 55 
REFERENCES ......................................................................................................................... 70 

5. EXTERNAL MAGNETIC FIELD MODELS.............................................................. 71 

5.1 INTRODUCTION ................................................................................................................ 71 
5.2 THE MEAD MODEL ........................................................................................................... 71 
5.3 THE MEAD-FAIRFIELD MODEL ......................................................................................... 73 

5.4 THE TSYGANENKO 87 MODEL .......................................................................................... 74 
5.5 THE TSYGANENKO 1989 MODEL ...................................................................................... 76 
5.6 THE KOSIK 98 MODEL ...................................................................................................... 76 
5.7 THE TSYGANENKO 96_V1 MODEL .................................................................................... 78 

REFERENCES ......................................................................................................................... 79 

6. CONJUGATE POINT CALCULATIONS ................................................................... 80 

6.1 INTRODUCTION ................................................................................................................ 80 

6.2 DEFINITION OF THE CONJUGACY ...................................................................................... 80 
6.3 THE CONJUGACY BETWEEN A POINT IN SPACE AND A POINT ON GROUND ......................... 81 

6.4 EQUATORIAL CONJUGATE ................................................................................................ 81 
6.5 THE MERSON ALGORITHM ............................................................................................... 81 

6.6 THE ADAMS METHOD ....................................................................................................... 82 
6.7 FIELD LINE TRACING PROBLEMS ....................................................................................... 83 

REFERENCES ......................................................................................................................... 84 

7. GEOPHYSICAL PARAMETERS ................................................................................ 85 

7.1 INTRODUCTION ................................................................................................................ 85 

7.2 THE GEOMAGNETIC LOCAL TIME ...................................................................................... 85 
7.3 THE MC ILWAIN L PARAMETER ....................................................................................... 86 

7.4 THE GALPERIN L PARAMETER.......................................................................................... 87 
7.5 THE INVARIANT LATITUDE ............................................................................................... 88 
7.6 THE ELECTRIC POTENTIAL ................................................................................................ 88 

7.7 THE CORRECTED GEOMAGNETIC COORDINATES ............................................................... 89 
7.8 HAKURA SOLUTION FOR CORRECTED GEOMAGNETIC COORDINATES ................................ 90 
7.9 GUSTAFSSON SOLUTION FOR CORRECTED GEOMAGNETIC COORDINATES ......................... 91 
7.10 STASIEWICZ SOLUTION FOR CORRECTED GEOMAGNETIC COORDINATES ........................... 91 

7.11 THE CORRECTED GEOMAGNETIC LOCAL TIME .................................................................. 92 
7.12 APPLICATIONS OF THE GALPERIN L PARAMETER ............................................................. 93 
REFERENCES ......................................................................................................................... 96 

8. ASTRONOMY AND CELESTIAL MECHANICS ..................................................... 97 

8.1 INTRODUCTION ................................................................................................................ 97 
8.2 FRAME OF REFERENCES .................................................................................................... 97 



 

 0.3 

8.3 FRAME OF REFERENCES REVISITED (IT WAS TOO SIMPLE!) ............................................. 100 

8.4 THE ASTRONOMICAL TIME REFERENCES ......................................................................... 103 
8.5 THE CALCULATION OF THE PRECESSION AND THE NUTATION ......................................... 104 
8.6 THE DIFFERENT SIDERAL TIMES ..................................................................................... 107 

8.7 COORDINATE TRANSFORMATIONS FOR AN OBLATE EARTH ............................................ 108 
8.8 A SIMPLIFIED APPROACH TO THE DEFINITION OF THE SIDERAL TIME .............................. 110 
8.9 CELESTIAL MECHANICS .................................................................................................. 112 
REFERENCES ....................................................................................................................... 113 

9. MATHEMATICS .......................................................................................................... 114 

9.1 INTRODUCTION .............................................................................................................. 114 
9.2 ANGLE OF A VECTOR WITH RESPECT TO AXIS X IN A (X, Y) COORDINATE SYSTEM 

KNOWING ITS TWO COMPONENTS X AND Y ............................................................................... 114 
9.3 TRANSFORMATION OF THE CARTESIAN COORDINATES OF A POINT INTO ITS SPHERICAL 

COORDINATES.......................................................................................................................... 114 
9.4 TRANSFORMATION OF THE SPHERICAL COORDINATES OF A POINT INTO ITS CARTESIAN 

COORDINATES.......................................................................................................................... 115 

9.5 PRODUCT OF A COLUMN MATRIX BY A RECTANGULAR (UNITARY) MATRIX .................... 115 
9.6 PRODUCT OF TWO UNITARY MATRICES........................................................................... 116 
9.7 TRANSFORMATION OF THE RECTANGULAR COMPONENTS OF A VECTOR INTO SPHERICAL 

COMPONENTS .......................................................................................................................... 116 

9.8 TRANSFORMATION OF THE SPHERICAL COMPONENTS OF A VECTOR INTO RECTANGULAR 

COMPONENTS .......................................................................................................................... 117 
9.9 LAGRANGE INTERPOLATION FORMULA .......................................................................... 117 

REFERENCES ....................................................................................................................... 118 



 

  1  

INTRODUCTION 

 

 

 

 

The MAGLIB software results from our forty-year experience in mission analysis and 

geophysics software for magnetospheric projects as well as personal research on charged 

particle motion and quantitative magnetic field modeling. In the early times, (Araks I & II, 

1972), the main demand was a correct description of the near Earth magnetic field. We used 

the external magnetic field model of Roederer and Sauer based on two dipoles to obtain the 

conjugacy in the northern hemisphere for the rockets launched in the Kerguelen islands. The 

results were very rough but showed both the diurnal and the seasonal motion of the conjugate 

points. The same model was used for Geos I. The partial failure of the launch of Geos I by a 

Mc Donnell Douglas Thor Delta rocket led W.P. Olson of the same Company to offer us an 

advanced model as a compensation in 1974. This model was used for mission analysis and 

projects like Geos II, Sambo, Arcade3 and Viking (French experiments). The version in our 

hands was limited to distances less than 15 Re in the night side but gave reasonable 

excursions of the conjugate points for a-synchronous spacecraft. All these low-altitude 

spacecraft (we consider the synchronous altitude as near-Earth compared to the size of the 

Magnetosphere) were not very demanding in terms of software: calculation of the 

geomagnetic local time, calculation of the Mc Ilwain L, etc. With Interball and its auroral and 

eccentric probes, a great step was accomplished. It was necessary to use more accurate 

external magnetic field models with a realistic topology of the field lines in the tail region. 

This was achieved with the Tsyganenko models (1982, 1987 and 1989). These models were 

incorporated in the software. It was also necessary to take into account the crossing of the 

Magnetopause and to avoid any calculation involving the magnetic field outside the 

Magnetosphere. The eccentric Interball spacecraft with a 200000. km apogee crossed different 

magnetospheric regions, radiation belts, aurora oval, polar cap, Magnetosheath, Neutral Sheet: 

adequate routines were developed to define the boundaries of these regions. This software 

paved the way to the development of an interactive calculation and visualization tool, the 

OCGM, which also incorporated sophisticated orbit extrapolation. A further step was 

accomplished for the Cluster project with the calculation of the distances to the different 

boundaries, spacecraft speed in various coordinate systems and a variable Solar Wind velocity 

inducing a variable subsolar distance. In between we finally clarified the mysterious corrected 

geomagnetic coordinates (mysterious only for the low latitude Space physicist!) and added the 

calculation of the eccentered-tilted dipole. Unfortunately all the mysteries have not been 

solved. Among these, the absence of a renewed B, L coordinates system, the present one 

being defined for an internal geomagnetic field of the early sixties. Also the comparison of 

observations labeled in geophysical coordinates of same L and MLT separated by a fifteen-

year interval. For Geos I we were very active finding some reasonable magnetospheric model. 

Later studies (Kosik, 1983) showed that during quiet times a tilted dipole proved sufficient, 

the ring current giving axisymmetric results for the synchronous altitude. The continuous 

advance in the knowledge of the Magnetosphere as well as the improvement of the models 

will lead to further modifications of this library, not to mention future interplanetary missions 

to Jupiter or Io. For the immediate needs the library contains about 160 routines. The routines 

have been divided into 9 sections. The first section contains the initialization routines to be 

called before any geophysical calculation or after a time update. The coordinate 

transformations form the second chapter. The regions and boundaries are described in the 
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third chapter. The section on models comprises internal and external magnetic field models. 

In this section all the DGRF internal field models since 1945 have been included. 

To avoid errors the internal magnetic field is calculated with two types of routines where the 

coefficients are stored differently. The comparison of the results thus guarantees the correct 

use of the coefficients. For the external models, model Kosik 99 has been added, its field line 

topology being a good compromise between the fast Tsyganenko 87, 89 models and the more 

precise but time consuming Tsyganenko 96. The calculation of the geomagnetic local time 

and of the Mc Ilwain L parameter are in the geophysics calculations chapter. The calculations 

of the geomagnetic local time or the tilt angle require the knowledge of the Sun position and 

of the Greenwich Meridian with respect to an inertial coordinate system. These calculations 

and related subjects form the core of the astronomical and celestial mechanics chapter. Basic 

mathematical routines such as matrix multiplication or determination of roots are in the 

mathematics chapter. Time and date calculations, transformations between julian and 

gregorian dates are collected in one chapter, the date calculations. Finally to avoid 

unnecessary headaches caused by stupid results whose origin lie in a wrong choice of 

parameters a series of control routines have been developed and form the control routines 

chapter. The whole set of routines represents 24000 lines of documented fortran77. The 

software was carefully tested and set to quality standards by Michel Lagreca and Suzanne Le 

Guillou from CS-SI. In a separate volume a series of user routines give practical examples of 

calculations by combining the elementary bricks of the library. Finally a third volume will 

contain the physics and the corresponding mathematical equations. In 2000 an HTML version 

should be available offering a hypertext search of the type of calculation in its three aspects: 

the physics and the mathematics, the basic routine and the example. This work has benefited 

from the interaction with numerous Space physicists involved both in the projects and 

fundamental research. We particularly acknowledge Roger Gendrin for his encouragement 

and support during two decades. 

In this chapter we review the different coordinate systems in use in magnetospheric physics: 

geocentric inertial, geocentric, solar ecliptic, geomagnetic or dipolar, solar magnetic, solar 

magnetospheric and the aberrated or Solar Wind coordinate system. 

 

 

Version 2.0 

In this new version, the coefficients of the internal magnetic field models have been updated 

and the IGRF 2005 introduced. 

A paragraph has been added about the applications of the Galperin L parameter and its 

connection to quantitative mathematical models. 

 
Version 2.1 

In version 2.1 the "Tables of Internal Magnetic Field Coefficients" paragraph has been 

rearranged for the sake of readability. The fact that the most recent set of coefficients is 

provisory is also clearly indicated 

In paragraph 7.4 “The Galperin L Parameter”, it has been added a reference to a publication 

by J.C. Kosik  
 
Version 3.0 
In this new version, the coefficients of the internal magnetic field models have been updated 

and the IGRF 2010 introduced. 

 

Version 4.0 
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In this new version, the coefficients of the internal magnetic field models have been updated 

and the IGRF-12 model for 2015 introduced. 
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1. COORDINATE TRANSFORMATIONS 

1.1 THE GEOCENTRIC INERTIAL COORDINATE SYSTEM 

This coordinate system is defined in the following way: 

 

 The origin O is at the barycenter of the Earth. 

 ZI axis is along the Celestial Poles axis. 

 XI axis is in the Equator and points towards the Vernal Point defined as the intersection 

of the Ecliptic and Equator great circles. 

 YI axis is defined through the cross product ZI x XI. 

 

ZI

p

XI




0

Equator

Ecliptic

 
 

Figure 1 

1.2 THE GEOCENTRIC TERRESTRIAL SYSTEM 

The geocentric coordinate system is not inertial and rotates with the Earth. It is defined in the 

following way: 

 

 The origin O is at the center of the Earth. 

 ZG axis is along the Celestial Poles axis. 

 XG axis is in the Equator and the plane OXZ contains the Greenwich Meridian.  

 YG axis is defined through the cross product ZG x XG. 

 

The Greenwich Meridian is defined by the right ascension of Greenwich. The right ascension 

is counted from the Vernal Point and positive eastwards. 
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Figure 2 

 

The transformation matrix from the geocentric inertial frame of reference to the geocentric 

frame of reference is: 

 



















100

0cossin

0sincos

GG

GG

RIG 



 

 

The transpose matrix RGI transforms the geocentric components of a vector into the 

geocentric inertial components. Matrices RIG (R for rotation, I for inertial, G for geocentric) 

and RGI are obtained with routine roig. The transformation of the coordinates and velocity 

components of a spacecraft from the inertial coordinate system to the geocentric coordinate  

system is performed in pvig. 

1.3 THE SOLAR ECLIPTIC COORDINATE SYSTEM 

In the Solar Ecliptic coordinate system the ZSE axis is along the Ecliptic Pole direction Q and 

the XSE axis points towards the Sun. The angle between ZSE and ZI axes is the obliquity of 

the Ecliptic with respect to the Equator. The YSE axis is defined by the cross, product 

ZSE x XSE. The position of the Sun along the Ecliptic is defined by its longitude L. The Sun 

longitude is calculated in the routine SUN. The transformation of the components of a vector 

from the geocentric inertial system into the solar ecliptic system GSE is obtained by the 

products of two transformations: a rotation around the XI inertial axis by , then a rotation 

around the ZSE axis by an angle L: 

 

    MMM LIE   
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Figure 3 

 

The matrices are defined as follows: 

 

 
























cossin0

sincos0

001

M   


















100

0cossin

0sincos

LL

LL

M L  

 

The product of these two matrices gives matrix RISE (R for rotation, I for inertial, SE for 

solar ecliptic). 

 

 


























cossin0

cossincoscossin

sinsinsincoscos

LLL

LLL

RISE  

 

The matrix transformation from the solar ecliptic frame of reference to the inertial frame of 

reference is RSEI, and the transpose matrix is RISE. These matrices are calculated in the 

subroutine roise (contraction of rotation from inertial to solar ecliptic). 

To transform a vector from the geocentric into the solar scliptic coordinate system it is 

necessary to apply the transformation from geocentric to inertial than the transformation from 

inertial to solar ecliptic. The transformation matrix is called RGSE. 

 

    RGIRISERGSE   

 

 






























coscossinsinsin

cossincoscoscossinsincoscossinsincos

sinsinsincoscoscossinsincossincoscos

GG

GGGG

GGGG

LLLLL

LLLLL

RGSE  

 

The matrix RSEG transforms a vector from the solar ecliptic coordinate system into the 

geocentric coordinate system and is the transpose matrix of RGSE. These matrices are 

calculated in routine rogse (contraction of rotation from geocentric to solar-ecliptic). Routine 

geose transforms the geocentric components of a vector into solar-ecliptic components. 

Routine segeo performs the opposite transformation.  



 

  7  

1.4 THE GEOMAGNETIC OR TILTED DIPOLE COORDINATE 
SYSTEM 

The geomagnetic coordinate system is derived from the geocentric coordinate system by two 

transformations: 

 

 A rotation of angle d around the axis Zg in the anticlockwise sense which transforms the 

triedron OXgYgZg into the triedron OX1Y1Z1.  

 A rotation of angle d around axis Y1 in the southward direction which transforms 

OX1Y1Z1 into the final frame of reference OXdYdZd. The values of d and d are 

obtained with the first three harmonics of the Earth geomagnetic potential (cf. chapter on 

Internal Magnetic Field). 

 

Zd Zg

d

X1

Xd

d

Xg
Y1

Yd

d Yg

 
 

Figure 4 

 

We obtain the transformation matrices: 

 

 

 


















100

0cossin

0sincos

dd

dd

M 



  

  

and  














 



dd

dd

M







cos0sin

010

sin0cos
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The final transformation matrix RGDIP is the product of these two matrices: 

 

     MMRGDIP   

 

 






















ddddd

dd

ddddd

RGDIP







cossinsincossin

0cossin

sinsincoscoscos

 

 

The matrix RGDIP and its transpose RDIPG (matrix transformation from dipole to 

geocentric) are calculated in the routine rogdip. Routine geodip transforms the geocentric 

components of a vector into dipolar components. Routine dipgeo performs the opposite 

transformation. 

1.5 THE SOLAR MAGNETIC COORDINATE SYSTEM 

The solar magnetic coordinate system can be deduced from the geomagnetic coordinate 

system by a single rotation about Zd axis. The Xsm axis is located in the meridian plane 

which contains the Sun direction: 

 

Zd Zsm

Xsm

Xd ds Ysm

Sun direction

 
 

Figure 5 

 

The calculation of the transformation matrix implies the knowledge of the geomagnetic 

longitude of the Sun. This geomagnetic longitude can be calculated from the position of the 

Sun in the geocentric frame of reference and using the transformation matrix RGDIP. The 

routine SUN gives the right ascension s and the declination s of the Sun. With matrices RIG 

and RGDIR the geomagnetic coordinates Xds, Yds, Zds of the Sun are obtained: 

 

  


































s

ss

ss

ds

ds

ds

RIGRGDIP

Z

Y

X







sin

sincos

coscos
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From Xds, Yds, Zds we get the geomagnetic longitude ds and the geomagnetic latitude ds of 

the Sun. The angle ds is also the tilt angle and called T. The transformation matrix RDSM 

from the dipole system to the solar magnetic system is simply: 

 

 


















100

0cossin

0sincos

dsds

dsds

RDSM 



 

 

Finally the transformation matrix RGSM from the geocentric coordinate system to the solar 

magnetic coordinate system is the product of two matrices: 

 

    RGDIPRDSMRGSM   

 

The transformation matrix RGSM (Rotation from Geocentric to Solar Magnetic) and the 

transpose matrix RSMG (Rotation from Solar Magnetic to Geocentric) are calculated in the 

routine rogsm. Routine geosm transforms the geocentric components of a vector into solar 

magnetic components. Routine smgeo performs the opposite transformation. 

1.6 THE SOLAR MAGNETOSPHERIC COORDINATES 

The solar magnetospheric frame of reference is deduced from the solar magnetic coordinate 

system through a rotation about Ysm axis. Xgsm axis points towards the Sun. Ygsm axis is 

along Ysm axis. The Zgsm axis forms a right-handed frame of reference with the other two 

axes. The amount of rotation is defined by the angle U counted positive from Zsm towards 

Xsm (figure 6). The matrix transformation RSMGSM is defined simply as: 

 

 














 



100

0cossin

0sincos

UU

UU

RSMGSM  

 

However U is opposite to the geomagnetic latitude of the Sun ds. We apply the previous 

matrix and the relation U = - ds in our software. 
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Zgsm
Zsm

U

Zsm U

Zgsm Ysm

Ygsm
 

 

Figure 6 

 

The matrix transformation RSMGSM and its transpose RGSMSM are calculated in the 

routine ROSMGS. The routine geogsm transforms the geocentric components of a vector into 

solar magnetospheric components. The routine gsmgeo performs the opposite transformation. 

1.7 THE TILT ANGLE T 

The TILT angle T is also the geomagnetic latitude of the Sun. The tilt angle is therefore 

negative around the Winter Solstice and positive around the Summer Solstice. The tilt angle is 

calculated in the routines inigeo1 (Cluster), inigeom (Geolib), inigeomv (from 1945 to 2000).  

1.8 THE SOLAR WIND COORDINATE SYSTEM 

The geocentric Solar Wind coordinate system can be deduced from the geocentric solar 

ecliptic coordinate system through a rotation of angle A. This rotation takes into account the 

angle between the Solar Wind direction and the direction of the SUN. This angle also called 

ABERRATION originates in the orbital motion of the Earth around the Sun. In a frame of 

reference linked to the Earth a Solar Wind particle will be closer to the Z axis and have a 

tilted trajectory with respect to the Sun direction (figure 7). The angle A can be calculated. As 

the Solar Wind velocity, around 400 km/s is much greater than the Earth velocity, 30 km/s we 

have: 

 

SW

E

V

V
A   

 

which gives A around 4°. 
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Figure 7 

 

The geocentric Solar Wind coordinate system can be deduced from the geocentric solar 

ecliptic coordinate system through a rotation A: 
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Figure 8 

 

The matrix transformation from solar ecliptic components to Solar Wind components is: 
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 where A = - 4° 

 

The transformation of solar ecliptic components of a vector into Solar Wind components is 

performed in aberrm. 
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1.9 CLASSICAL VERIFICATIONS 

 

Many errors can occur in the mathematical calculation of the matrices as well as in the 

software. It is not always obvious to find the errors but in some cases a frame of reference 

differs from another frame of reference by a rotation along one of the axes. As a consequence 

the components of the vector along this rotation axis must remain the same. From the 

previous paragraphs one must have: 

 

Zd (component along the dipole) = Zsm (Z component in the solar magnetic frame) 

Ygsm (solar magnetospheric) = Ysm (solar magnetic) 

Za (aberrated solar ecliptic) = Ze (non aberrated solar ecliptic) 

REFERENCES 

Ref. 1 C. Russel: Geophysical Coordinates Transformations, Cosmic Electrodynamics, 

1971, 2, 184-186, D. Reidel Publishing Company 
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2. BOUNDARIES AND REGIONS 

2.1 INTRODUCTION 

 

The Magnetosphere can be defined as the location where the Solar Wind interacts with the 

Earth's magnetic field. The Solar Wind is a plasma with an average velocity of 400 km/s 

which compresses the magnetic field into a cometary shape. The diameter of this comet is 

about 60 earth radii and the tail extends over several hundred earth radii.  

 

Earth

Tail, Diameter 60 Re, Length > 200 Re

 
 

Figure 1 

 

The distant regions are shown in the following figure. 

 

Bow Shock

Magnetosheath

Magnetopause

Polar Cap

Auroral

Oval
Radiation Belt Plasma Sheet

Neutral Sheet
 

 

Figure 2 

 

The subsolar point is approximately at 10 Re and is also the intersection of the Magnetopause 

with the Earth-Sun line. Along this same line the Bow-Shock is encountered at 15 Re. In a 

meridian plane perpendicular to the Sun Earth line the Magnetopause is encountered at 15 Re 

and the Bow-Shock is encountered at 20 Re. 
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Near the Earth we have several regions: 

 

 The Radiation Belt which can be split into two belts: an Inner Belt bounded by a dipolar 

shell extending up to 3.5 Re in the equatorial plane and an Outer Belt bounded by a 

dipolar shell which extends up to 6. Re in the equatorial plane. The Inner Belt is the most 

"energetic" with protons of MeV energies. 

 The Plasmasphere. 

 The north and south Auroral Ovals where Auroras are observed. 

 The Diffuse Auroral Region. 

 The Cusp where magnetic field lines originating from the Magnetopause concentrate 

when they reach the Earth. 

 

Outer Belt

Dipole

Inner Belt
 

 

Figure 3 

 

For the mathematical definition of the regions we have chosen two approaches: 

 

 Near the Earth where the magnetic field is less sensitive to external perturbations the 

regions are defined by their L-shell boundaries 

 In the outer regions where the magnetic field is sensitive to the Solar Wind conditions we 

have chosen a probabilistic approach. The Magnetopause and the Bow-Shock were given 

a certain thickness. When the indicator is 1 it simply means that the probability for the 

spacecraft to encounter the Magnetopause (or the Bow-Shock) is high. When the 

indicator is 0 the probability to encounter the boundary is small. 

2.2 THE RADIATION BELT 

The Radiation Belt is defined by its outermost boundary. This outer boundary is defined by 

the apex of the dipole field line (L = 6). The lower boundary is defined by a sphere of radius 

1.16 Re. The Radiation Belt is divided into two belts. An Inner Belt with high energy particles 

confined to a L shell (L = 3.5). An Outer Belt of low energy particles extending further out to 

the L shell (L = 6).  
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The L shell is defined by the following equation: 

 

2sinLr   for rL ,
2


  

 

6 5 4 3 2

L = 6 L = 3.5
 

 

Figure 4 

 

routine rbelt calculates if the spacecraft is inside the Van Allen radiation belt region. 

2.3 THE PLASMASPHERE 

We use the model of Chappell et al. (Ref. 2). In this model the Plasmasphere intersects the 

equatorial plane in approximately circular contour. For each local time the contour is defined 

by the apex of the dipole magnetic field line L according to Table I: 

 

TABLE I 

 

 

TGL 0h 1h 2h 3h 4h 5h 6h 7h 8h 9h 10h 11h 

L 4.1 4.1 4.2 4.2 4.1 4 4 4 4 4 4.15 4.3 

 

TGL 12h 13h 14h 15h 16h 17h 18h 19h 20h 21h 22h 23h 

L 4.5 4.6 4.8 5.2 6.1 6.7 6.8 6.6 6. 5.4 4.8 4.4 

 

The routine chapel determines if the spacecraft is inside the Plasmasphere. Routine chapp2 

calculates the dipole field line L value of the Plasmasphere boundary for a given MLT. 

2.4 THE AURORAL OVAL 

We use the model of Feldstein (Ref. 5) for a moderate geomagnetic activity. The Auroral 

Oval is defined by its poleward and equatorward boundaries. For each local time the boundary 

is defined by two colatitudes according to the formulae: 
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Figure 5 

 

The routine oval calculates if the spacecraft is inside the Auroral Oval region. 

2.5 THE POLAR CAP 

The Polar Cap is defined by its boundary which is the northern boundary of the Auroral Oval. 

The routine calpol calculates if the spacecraft is inside the Polar Cap region. 

2.6 THE DIFFUSE AURORAL REGION 

The Diffuse Auroral region has been defined according to the work of Gussenhoven et al. 

(Ref. 6). For the boundary we have chosen an average geomagnetic activity level, Kp = 3. The 

invariant latitude of the northern boundary is given as a function of the geomagnetic local 

time in Table II: 

 

TABLE II 

 

MLT 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 

0  60.13 60.45 61.39 62.33 63.26 62.19 62.50 63.17 63.69 64.43 65.27 66.35 

 

MLT 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 

0  66.88 67.41 67.94 68.47 67.76 67.17 65.98 64.91 63.73 63.02 62.56 61.59 

 

This table has been obtained from Table 2 of Gussenhoven et al. using the formula: 
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Kpo    

 

The northern boundary of the Diffuse Auroral region is also the southern boundary of the 

Auroral Oval. The routine gussen calculates if the spacecraft is inside this region.  

2.7 THE CUSP 

We have chosen the following definition: 

A point belongs to the Cusp region if its conjugate on ground is located between meridians 8h 

MLT and 16h MLT and parallels of 75°, 80° geomagnetic latitude. The routine cusp 

calculates if the spacecraft is inside the Cusp region. 

2.8 THE NEUTRAL SHEET 

Fairfield (Ref. 4) has defined a simple model of a wharped Neutral Sheet. The Neutral Sheet 

is located in the tail beyond a circle of radius Ho sin , where Ho is the hinging distance and  

is the tilt angle. For a given solar magnetospheric Y coordinate the location z of the Neutral 

Sheet above the solar magnetospheric equatorial plane is: 

 

   sin1
2

1

2

2
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
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
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




 D

Y
YDH

o
OZ  for 

oYY   

 

and 

 

 sinDZ   for oYY   

 

We have Ho = 10.5 Re, D = 14 Re, Yo = 22 Re. 

 

The shape and the location of the Neutral Sheet are shown in the following figures. We have 

chosen a thickness of 1 Re for the Neutral Sheet. The routine posns developed for the 

CLUSTER experiment Whisper calculates the distance to the Neutral Sheet. Routine posnsh 

developed for INTERBALL calculates the distance to the Neutral Sheet and indicates if the 

spacecraft is in the Neutral Sheet region, assuming a thickness of 1 Re for this region. 
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Figure 6 
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Figure 7 



 

  19  

2.9 THE PLASMA SHEET 

We define the Plasma Sheet with respect to the Neutral Sheet. If ZNS is the location of a point 

of the Neutral Sheet the locations of the upper and lower boundaries of the Plasma Sheet are 

given by the following formulae: 

 

11

11

bYaZZ

bYaZZ

GSMNSPSL

GSMNSPSU




 

 

Where ZPSU, ZPSL are respectively the Z coordinate of the upper and lower boundaries of the 

Plasma Sheet. We have chosen a1 = 0.186 and b1 = 3. The routine pospsh calculates if the 

spacecraft is inside the Plasma Sheet (INTERBALL). 

2.10 THE MAGNETOPAUSE 

We use the Sibeck model (Ref. 7). The shape of the Magnetopause is given in an 

axisymmetric coordinate system in the Solar Wind coordinate system: 

 

022  CBxAxR  

 

where R is the radius vector to the surface and perpendicular to the x axis. A, B, C are 

constants which depend on the Solar Wind pressure. These constants are given in Table III: 

 

TABLE III 

 

Pressure A B C rb  

0.54-0.87nPa 0.19 19.3 -272.4 12.6 

0.87-1.47nPa 0.19 18.7 -243.9 11.7 

1.47-2.60nPa 0.14 18.2 -217.2 11.0 

2.60-4.90nPa 0.15 17.3 -187.4 10.0 

4.90-9.90nPa 0.18 14.2 -139.2 8.8 

 

For the probabilistic approach we have chosen two boundaries or two subsolar distances 

rb = 11.7 and rb = 10.0 for the INTERBALL project. We have the two equations: 
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222
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The spacecraft is inside the Magnetosphere when P1 < 0. The spacecraft crosses the 

Magnetopause when P2 < 0 and P1 > 0. The spacecraft is in the Solar Wind when P2 > 0. The 

routine mpsib calculates if the spacecraft is in the Sibeck Magnetopause region 

(INTERBALL). 
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2.11 THE SHABANSKY MAGNETOPAUSE: 

The Shabansky Magnetopause is an axisymmetric paraboloid (Ref. 1): 
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X
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Rb

x
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Figure 8 

 

The surface of this paraboloid is given by the equation: 

 

1
2 2

2


bb RR

x 
 

 

Where Rb is the subsolar distance and  is the axial distance 

 
222 zy   

 

From the definition we get: 

 

 bb RxR  2  

 

A point (x, y, z) is in the Shabansky Magnetosphere if it satisfies the two conditions: 

 

bRx   and  xzy  22  

 

The routine mpause calculates if a point if a point is inside or outside the Magnetosphere. 
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2.12 THE BOW-SHOCK 

The Bow-Shock model is taken from Fairfield (Ref. 3). The Bow-Shock surface is defined in 

a Solar Wind coordinate system, i.e., a solar ecliptic system corrected from Aberration. The 

surface equation is: 

 

022  EDxCyBxAxyy  

 

where x is the Solar Wind coordinate in the Sun direction and y is the radial coordinate. The 

Bow-Shock is axisymmetric. The coefficients given by his Table II are:  

 

10.652,644.45,280.1,0381.0,0296.0  EDCBA  

 

The above equation can be simplified by a rotation U. We introduce the new coordinates X, Y 

in the following way: 
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The surface equation can be rewritten as: 
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We choose U in order to cancel the XY term. We get: 

 

1
2tan




B

A
U  

 

We get U = -0°.817 
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After the rotation performed for the Aberration a second rotation U is thus performed as 

shown below: 

 

X x

U

y

Y

U

x X

Y

y

figure (a) figure (b)

U is counted positive in a rotation from x to y. U = -0.°817 corresponds to figure

(b)
 

 

Figure 9 

 

We can write the last equation as: 

 

022  rrrrr EXDYCYBXA  
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The constants Ar, Br, Cr, Dr can be calculated. We obtain: 

 

1.652,657607.45,62933.0,000211.1,03811.0  rrrrr EDCBA  

 

The aberrated coefficients are calculated in the routine aberrm. 

 

The equation above can be simplified further, dividing by Br we obtain the equation: 
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We make the following approximation: 

 

rrrnrnrn ECEEDDAA  2

4

1
,,  

For convenience in the calculations we also set Yn = Yr which induces a systematic error of 0.3 

Re in Y. The Bow-Shock general equation can be deduced as it has now axial symmetry: 

 

022  nnn EXDRXA  

 

with R
2
 = Y

2
 + Z

2
 

 

In the INTERBALL we introduce a probabilistic approach in the following way. We define a 

cubic volume around the spacecraft location: 

 

Xin = X - 1 Yin = Y - 1 Zin = Z - 1 

Xout = X + 1 Yout= Y + 1 Zout =Z + 1 

 

We have two equations: 
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If F2 < 0 the spacecraft has not yet encountered the Bow-Shock. If F1  0 and F2  0 the 

spacecraft will probably encounter the Bow-Shock. If F1 > 0 the spacecraft has probably 

crossed the Bow-Shock and is in the Solar Wind. These calculations are performed in bwshff. 

For CLUSTER we don't use a probabilistic approach. 

2.13 SIMILARITIES BETWEEN THE EQUATIONS OF THE TWO 
SURFACES 

From the previous paragraphs we infer that the Magnetopause and the Bow-Shock have more 

or less the same shape. If we adopt a common general equation we can write for the shape of 

any of the two surfaces: 

 

022  edxcbxax   

 

The constant for the two surfaces are given in the following Table: 

 

Constant Magnetopause Bow-Shock Term 

a 0. 0.0296 x 

b 0.14 -0.0381 x
2
 

c 0. -1.280  

d 18.2 45.644 x 

e -217.2 -652.10  

 

For the Magnetopause we have chosen the constants for moderate Solar Wind conditions. For 

the Bow-Shock the constants were taken in Ref 7. 
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2.14 INTRODUCING THE DISPLACEMENT OF THE BOW-SHOCK 

As suggested by J.C. Trotignon for CLUSTER project we define the subsolar distance of the 

Bow-Shock as a function of the subsolar distance of the Magnetopause according to formula: 

 

726.0bbs rr   

 

For simplicity we consider a pure parabolic surface for the Magnetopause for the 

determination of some constants. The equation for this Magnetopause surface is: 

 

xxp o   

 

We have  = 25.5 for x = 0 and  = 0 for x = 14.46. We get easily p = 6.706. 

From the preceding equation we can derive the constant e: 

 

00

222  xpxp  

 

The constant e = - P
2
 x0 thus e = - (rbs)  45. 

 

We summarize the results for various Solar Wind conditions. We give the index isw = 1 for 

very quiet Solar Wind and isw = 5 for very disturbed conditions. Results are shown in the 

Table below: 

 

isw 1 2 3 4 5 

rb
 8.8 10.0 11.0 11.7 12.6 

rbs
 12.12 13.77 15.15 16.11 17.3 

ebs
 545.4 619.65 681.75 724.95 778.5 

 

The other constants have not been changed. 

2.15 THE MAGNETOSHEATH 

It is the region between the Bow-Shock and the Magnetopause. From the equations written 

previously a probabilistic approach is taken for INTERBALL and a deterministic approach is 

taken in CLUSTER. For INTERBALL the Magnetosheath region corresponds to P2 > 0 

(spacecraft out of the Magnetopause) and to F2 < 0 (Bow-Shock not yet crossed by the 

spacecraft). The routine msheath for INTERBALL calculates if the spacecraft is inside the 

Magnetosheath region or inside the Bow-Shock region or inside the Magnetosphere. For 

CLUSTER another solution has been found which implies the calculation the distance of the 

spacecraft to the different boundaries. When the spacecraft is between the boundary and the 

Earth the distance is set negative. It is positive otherwise. Thus the spacecraft inside the 

Magnetosheath corresponds to a positive distance to the Magnetopause and a negative 

distance to the Bow-Shock. 
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2.16 THE SOLAR WIND 

For INTERBALL the spacecraft is in the Solar Wind when F1 > 0. For CLUSTER the 

distance to the Bow-Shock must be positive. The routine bwshff determines if the spacecraft 

is in the Solar Wind region (INTERBALL). 

2.17 THE MAGNETOPAUSE MODEL OF SHABANSKY AND THE 
FIELD LINE ESCAPE 

For some external magnetic field models field lines can escape in the day side of the 

Magnetosphere. It is necessary to stop the field line tracing in this case and a routine check is 

introduced at each step of the field line calculation. We have introduced the simple 

Magnetopause mlodel of Alekseev and Shabansky described earlier. The distance of a point 

of the Shabansky Magnetopause to the x axis is given by: 

 

 xrr bbmp  2  

 

where rb is set to 10 or 11 Re for convenience. When for a point (x, y, z) of the field line the 

condition   mp is fulfilled the calculation is stopped ( 22 zy  ). 

2.18 THE SHADE OF THE EARTH 

It is sometimes useful to know if the spacecraft is in the Shade of the Earth or not. The routine 

cahsl calculates this possibility. 
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Figure 10 

 

The position of the Sun is given by its celestial coordinates , . The position of the 

spacecraft is given by its celestial coordinates S, S. The position of the anti-Sun is given by 

the celestial coordinates: O, O where O =  + , O = - . 
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It is possible to calculate the spherical angle u between the axis of the umbra cylinder and the 

direction of the spacecraft: 

 

 OSSOSOu   coscoscossinsincos  

 

The distance of the spacecraft to the umbra cylinder is therefore  = r cosu. If   Re and 

u   / 2 the spacecraft is inside the Shade of the Earth. In the other case it is outside  

2.19 THE MAGNETOSPHERE AS A UNIQUE ENVIRONMENT 

In this chapter we have considered all the regions encompassed by a high excentricity 

spacecraft such as the TAIL probe of INTERBALL project. It is tempting to assemble all 

these parts into one general routine which can give for any position of the spacecraft the 

related magnetospheric region. This routine, posmag, was developed for INTERBALL. This 

routine can associate an index 0 or 1 to any of the 15 regions of the Magnetosphere, besides 

other calculations (L, MLT,.....). 
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3. DISTANCES TO THE BOUNDARIES 

3.1 INTRODUCTION 

For the CLUSTER project and the Whisper Experiment we have developed a series of 

routines which calculate the distances to the boundaries. These boundaries depend on the 

Solar Wind pressure (Bow-Shock, Magnetopause) or not (Plasmapause). Except for the 

distance to the Neutral Sheet we have calculated the distance to the boundary as the minimum 

distance between a spacecraft location and the surface. 

3.2 DISTANCES TO THE MAGNETOPAUSE AND THE BOW-
SHOCK 

These two boundaries are paraboloids. The equation of the surface is defined as: 

 

022  nnn ExDxA   (1) 

 

Where An, Dn, En are obtained in the Solar Wind coordinate system. Taking into account the 

axial symmetry, the distance between the spacecraft and a point on the surface is: 
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where (x1, 1) are the coordinates of the spacecraft. We define the distance as the minimum of 

d. taking the derivative with respect to x we get: 
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The derivative ' can be obtained from equation (1): 
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Inserting this result in the previous equation we get: 
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 can be extracted from (1) and equation (5) can be rewritten as: 
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This equation can be solved numerically. The distances are counted positive if the surface is 

between the spacecraft and the Earth and negative if the spacecraft is located between the 

surface and the Earth. The distance to the Magnetopause or the Bow-Shock is calculated in 

the routine caldis for the CLUSTER project, and the intensity of the Solar Wind is taken into 

account. It is also possible to calculate the distance to the Shabansky Magnetopause parabola 

using the cardan algorithm to obtain the roots of a third degree equation. The calculations are 

performed in routine ddparab. 

3.3 DISTANCE TO THE NEUTRAL SHEET 

The Neutral Sheet position has been defined using the formulae of Fairfield (Ch 2, Ref 4). To 

locate the spacecraft with respect to the Neutral Sheet we define the distance of the spacecraft 

to the Neutral Sheet as: 

 

nshzzgsmd   (7) 

 

where zgsm is calculated in the GSM coordinate system and znsh is the z coordinate of the 

Neutral Sheet at point xgsm, ygsm: 
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Figure 1 

 

The distance is counted positive when the spacecraft is above the Neutral Sheet and the 

distance is counted negative below. The calculation is done in routine posns (CLUSTER) and 

in routine posnsh (INTERBALL). 
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3.4 DISTANCE TO THE PLASMA SHEET 

The distance to the Plasma Sheet for CLUSTER uses the model developed for INTERBALL 

where we were interested only in verifying if the spacecraft was in the region: 
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Figure 2 

 

The upper and lower boundaries of the Plasma Sheet were defined by the following equations: 

 

11

11

bYaZZ

bYaZZ

GSMNSPSL
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
 

 

For CLUSTER the distance to the northern boundary of the Plasma Sheet is defined as: 

 

PSUS ZZdzpshn   

 

The distance to the southern boundary of the Plasma Sheet is defined as: 

 

PSLS ZZdzpshs   

 

These calculations are performed in routine posps. 
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3.5 DISTANCE TO THE PLASMAPAUSE 

The Plasmasphere boundary has been defined by Chappell (Ref. 1) as a distorted shell where 

the field line parameter L is local time dependent. The shape of the Plasmapause is a 

continuum of dipole field lines of various L. For a given spacecraft location xgsm, ygsm, zgsm 

and a given Epoch (U.T.) it is possible to calculate the magnetic local time of the spacecraft. 

From Table II in the previous chapter it is possible to calculate the L parameter of the 

corresponding field line by interpolation between two nearby local times. Once L is obtained 

the distance d can be calculated. 

 

Q

(r1, 1)

(r, )

L

 
 

Figure 3 

 

The distance d between the spacecraft located in (r1, 1) and the Plasmapause is obtained for 

the point (r, ) which corresponds to d minimum: 

 

 11

2

1

22 cos2   rrrrd  (8) 

 

We have for a dipole field 

line: 
r = L sin

2
  

 

Taking the derivative with respect to   we obtain: 

 

    1111

22 sinsin2coscos4cossin4sin   rrLLd  (9) 

 

d' = 0 will correspond to d minimum. Equation (9) can be solved numerically. The 

calculation is performed in routine dchapp (CLUSTER). 
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3.6 DISTANCES, A GENERAL ALGORITHM 

 

For the WHISPER experiment onboard CLUSTER we have to calculate the distances to the 

different boundaries, Magnetopause, Bow-Shock, Plasmasphere, Neutral Sheet, northern and 

southern Plasma Sheet boundaries. The calculation to this complete set of boundaries is 

performed in routine clusdis which assembles the different routines developed for CLUSTER 

and described above. 
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4. INTERNAL MAGNETIC FIELD MODELS 

4.1 INTRODUCTION 

Internal magnetic field models are derived from measurements performed in ground stations, 

ships and aboard low-Earth orbit spacecraft. Ground measurements have two advantages: 

 

 They are and have been made during a long period. 

 They are performed in good conditions (magnetic observatories). 

 

Their major disadvantage is the presence of magnetic perturbations generated by localized 

crust anomalies which can lead to errors as high as 100 to 400 nanoteslas (nT). Magnetic 

observatories are not available on oceans and seas and the magnetic measurements are 

performed by ships. 

Spacecraft measurements offer a good coverage of the whole Earth in a rather short time. The 

on-board magnetometers have presently a high sensitivity (better than 0.1 nT). The final 

precision depends mainly on the local perturbations due to the spacecraft itself or the 

uncertainty in the attitude determination. 

Present magnetic field models achieve a precision of 20 nT. 

4.2 THE SPHERICAL HARMONICS EXPANSION 

Present models of the internal magnetic field usually neglect the contributions (magnetic field 

effects) of the ionospheric currents and of the ring current. The magnetic field is therefore 

derived from a scalar potential and is also divergence free: 

 

VB 


 and 0 B  (1) 

 

which leads to 
2
 V = 0 

 

In spherical coordinates the Laplace equation can be written: 
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We separate the variables: 

 

    ,YrfV   (3) 

 

We obtain two different equations: 

 

The Euler equation:      02  rfrfr
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and the spherical harmonics equation: 0
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The solution of the Euler equation for the internal magnetic field can be written: 
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The spherical harmonics equation can be split further: 

 

      hgY ,  (7) 

 

where  = cos 

 

We get: 

 

                 01
1

1
1

2

2 


 






 hghggh  (8) 

 

We consider harmonic functions with period 2 . In this case 2n
h

h



 (modulo some 

constant). The solution h () has the following form: 
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Function g() satisfies the following differential equation: 
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In this particular case when n = 0,  is an integer, g() satisfies the equation: 

 

    0121 2  ggg   (10) 

 

The solution of this equation is the Legendre polynomial Pk(). Thus for n = 0 the solution has 

the form: 
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when the longitude  is absent the potential V can be expanded in zonal harmonics. The 

Legendre functions can be expressed as: 

 

10 P , cos1 P ,  1cos3
4

1 2

2  P ,   cos3cos5
8

1 3

3 P ,... (12) 

 

In a more general way: 
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We have: 
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 is also a solution of equation 
2
V = 0 when n is zero. 

 

The most general solution in the axisymmetric case is thus: 
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when n is different from zero the equation (9) is an associated Legendre equation. The 

solution of this equation is an associated Legendre function Pn,m() defined as: 
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The general solution of 
2
V = 0 has the following form: 

 

     














n

m
mn

n

PmNmM
r

V
0

,
0

1

cossincos
1

  (17) 

 

The associated Legendre functions can be written as: 
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We get: 
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more generally: 
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The Pn,m(cos) can be normalized. 
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A truly normalized associated function should have the normalizing factor: 
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In fact Schmidt defined new normalizing constants. The associated Legendre functions Pn,m 

(cos ) cos m and Pn,m (cos ) sin m are orthogonal on a sphere. Surface integration on a 

sphere of radius a gives: 
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When n = n' and m = m' = 0 we get (13). 

When n = n' and m = m'  0 we get: 
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Schmidt used this fact to define the following constants: 
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In this case: 
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These functions are not really normalized. Their main advantage lies in the fact that the 

constants An
m, Bn

m give roughly the size of the different harmonics. 

 

The associated Legendre polynomials have the following properties: 

 

 Pn
m () has (n - m) real roots between  = 0 and  =  

 if (n - m) is even or odd Pn
m () is symmetric or antisymmetric with respect to the equator. 

 the Pn
m () can be written: 
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where 1, 2, ……., n-m are the (n - m) roots. The harmonics  
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the (n - m) small latitude circles and along the (2m) meridians. 

For n = 0 we have zonal harmonics. 

For m = n we have sectoial harmonics. 

For n > m > 0 we have tesseral harmonics. 

The relationship between the Schmidt functions Pn,m () and the Laplace-Gauss functions 

 Pn m,   is: 
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where (2n - 1)!! = 1.3.5……. (2n - 1) 

4.3 GENERAL EXPRESSION OF THE MAGNETIC FIELD IN 
SPHERICAL HARMONICS 

The potential of the magnetic field can be written as: 
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where r, ,  are the geocentric coordinates. r is counted in kilometers, a is the geomagnetic 

earth radius (6371.2 km),  is the colatitude and  is the longitude. The components of the 

geomagnetic field are: 
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The gn
m and hn

m are the Schmidt normalized coefficients of the Earth's magnetic field. The Pn
m 

are the associated Legendre functions. EOS as well as Scientific Journals publish each five 

years the Gauss coefficients for the IGRF and DGRF. 

 

The IGRF (Interim Geomagnetic Reference Field) is predictive while the DGRF (Definitive 

Geomagnetic Reference Field) corresponds to stable coefficients. For example IAGA 2015 

defined the IGRF 15 and the DGRF 10.  

4.4 THE LAPLACE GAUSS RECURRENT FORMULAE 

The Laplace Gauss formulae are used in the software for the calculations of the internal 

magnetic field. To derive them we use the equation (51aa, Ref. 1, p.623): 
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which can be written: 
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If we set n  n - 1 we get: 
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We introduce the relation between Pn,m and Pn,m: 
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Introducing (36) into (35) we obtain: 
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Introducing (37) and (38) into equation (37) gives: 
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This formula is valid for n > m. For n = m we start with the general formula (42): 
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For n = m we get: 
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For n - 1 we obtain from (43):  
 
 

 1
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nnn
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Comparing (43) and (44) we derive the following relationship (argument  is omitted for the 

Legendre polynomials): 

 

  1,1, sin12  nnnn PnP   (45) 

 

To obtain the Laplace-Gauss relationship we take into account the formula: 

 

  nn

nn PnP ,

, !12   (46) 

 

Applying (46) to both members of equation (45) gives: 

 
1,1, sin  nnnn PP   (47) 
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Taking into account the general formula (43) and calculating the derivatives of equations (40) 

and (47) we have the complete set of equations: 

 

P0 0 1,   



P0 0

0
,

  (48a) 
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with 
 
  3212

1 2
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The Schmidt normalizing functions must be converted in the gaussian system. To obtain the 

recurrence formulae one notices that: 

 

from equation (29) :  
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and from equation (26):  
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We have:  
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and:  
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The coefficient Sn,m of equation (51) can be rewritten as: 
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We can replace part of the above expansion by coefficient S
n,m-1

 and obtain finally: 
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for m  1. When m = 0 we have from equation (49): 
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For m = 1 we have  
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which can also be rewritten as: 
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We can find a recurrence relationship between Sn,1 and Sn,0 using equations (55a) and (55c): 
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If we consider the more general formula for m > 1 we would have: 

 

for m = 1 S S
n m

n m

n n, ,1 0 1
2

 


  (57) 

 

In order to bobtain a unique formula we write: 

 

  
mn

mnJ
SS mnmn




  11,,  (58) 

 

where J = 2 for m = 1 and J = 1 for m > 1. For m = 0 we can deduce a relationship from 

equation (56): 

 

  
n

n
SS nàn 120,1, 

   (59) 
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4.5 THE RECURRENT FORMULAE IN THE SOFTWARE 

The calculation of these formulae with the computer imply the use of arrays without null 

indexes. To avoid this problem it is necessary to make changes in the superscript: k = n + 1 

and l = m + 1. We obtain a new set of formulae which appear in the code if we replace n,m in 

formulae (58) and (59): 
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For the Legendre polynomials we have the following expressions: 
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The coefficients in the harmonic expansion have non zero superscripts, i.e., g1
0
 is labeled as 

g(2,1) in the software. In the american software memory was saved and coefficients gn
m and hn

m 

were packed in a square matrix as follows: 

 

       

       

       

       nngngngng

nhggg

nhhgg

nhhhg

,3,2,1,

4,3,32,31,3

3,3,32,21,2

2,2,32,21,1

 (62) 

 

These coefficients are stored in the common LG, column by column. The coefficient g(1,1) 

contains a numerical factor 10 or 100 which normalizes the coefficients and these coefficients 

as stored as integers. The only problem with this way of arranging the (14,14) matrix is that it 

is a rather cumbersome exercise when one remembers that the coefficients given in the 

literature have different indices: For IGRF 2015 we have in IAGA the following table I: 
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TABLE I 

 

 

g/h 

 

n 

 

m 

IGRF 2010 

coefficients in 

nanoteslas 

secular variation 

in nanoteslas/yr 

g 1 0 -29442,0  10,3  

g 1 1 -1501,0   18,1  

h 1 1    4797,1  -26,6  

g 2 0 -2445,1  -8,7  

g 2 1 3012,9     -3,3  

h 2 1 -2845,6     -27,4  

g 2 2 1676,7    2,1  

h 2 2 -641,9  -14,1  

 

In the code we have the following table II or matrix lg: 

 

TABLE II 

 

 l = 1 l = 2 l = 3 l = 4 

k = 1 lg(1,1) = 10 lg(1,2) = 47971 lg(1,3) = -28456 lg(1,4) = -1153 

k = 2 lg(2,1) = -294420 lg(2,2) = -15010 lg(2,3) = -6419 lg(2,3) = 2449 

k = 3 lg(3,1)  = -24451 lg(3,2) = 30129 lg(3,3) = 16767 lg(3,3) = -5384 

 

On the lower left of the last table one recognizes the g(k,l) coefficients and on the upper right 

one recognizes the h(k,l). These coefficients are read as integers in the matrix lg(k,l) and the 

transformation factor from integers to real is contained in the coefficient lg(1,1). 

A similar matrix must be constructed for the secular variation of the g(k,l) and h(k,l) i.e., the 

 lkg ,


 and  lkh ,


. The magnetic field is calculated with this algorithm by the routines 

dgrf45_70 for epochs between 1945-1970, dgrf70_95 for epochs between 1970-1995, 

dgrf95_15 for epochs between 1995-2015, igrf15 for epochs greater than 2015,  dgrf10 for 

epochs greater than 2010, dgrf05 for epochs greater than 2005, dgrf00 for epochs greater 

than 2000, dgrf95 for epochs greater than 1995, and gsfc65 for epochs around 1965 (Mc 

Ilwain L calculation). 

4.6 A NEW COMPUTER CODE FOR THE CALCULATION OF THE 
GEOMAGNETIC FIELD 

In the previous paragraph we have mentioned that the creation of the LG matrix was a 

difficult task and a source of errors because of the difference in the ordering of the 

coefficients. We have modified the computer code in order to keep the natural ordering of the 

coefficients published each five years by the IAGA and we have two commons, one LG for 

the coefficients in their natural order: 

 

           ,....1,2,1,2,0,2,1,1,1,1,0,1/ hgghggLG  
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and the common LGT which contains the secular derivatives. The coefficients in LG and in 

LGT are transformed in coefficients gg, ggt and hh, hht in the following double loop: 

 

 

    

    

    

    

    

    

continue

nmntotntot

continue
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incntotdblelkgg

linc

kldo

knm
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kkdo

ntot

30

20

1lg,

1lg,

lg,

lg,

22

,220

12

1lg,

1lg,

max,230

0

























 

 

with this new software the DGRF95 coefficients are stored in arrays LG and LGT in the 

following way: 

 

LG / -295568,-16718,50800,-23405,30470,-25949,16569,...... 

LGT / 88,108,-213,-150,-69,-233,-10,-140,......... 

 

In LGT the coefficients have been multiplied by a factor 10 and are later divided by the same 

factor. One can compare the above series and table II.  

Another advantage of this new code is the possibility of cross-checking the coefficients as the 

arrangements of these same coefficients are completely different. 

The magnetic field is calculated with this algorithm by the routines chp45_70 for epochs 

between 1945-1970, chp70_95 for epochs between 1970-1995, chp95_15 for epochs between 

1995-2010, chp95 for epochs greater than 1995, chp00 for epochs greater than 2000,  chp05 

for epochs greater than 2005, chp10 for epochs greater than 2010 and chp15 for epochs 

greater than 2015. 
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4.7 THE THREE COMPONENTS OF THE GEOMAGNETIC FIELD 

The components of the geomagnetic field are given in the  ˆ,ˆ,r̂  frame of reference: 

 

N

r̂

̂

̂

 
 

Figure 1 

 

The three components of the geomagnetic field are: 
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  (63) 

 

In these formulae Br is counted positive outwards (in the direction of r̂ ), B is counted 

positive southwards (in the direction of ̂ ), B is counted positive eastwards (in the direction 

of ̂ ). 
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4.8 THE TILTED DIPOLE 

 

The first three harmonics of the magnetic field potential can be replaced by a tilted dipole. 

From (30) we have: 

 

       1

1

1

1

1

1

0

1

0

1

2

sincos PhgPg
r

a
aV 








  (64) 

 

where P1
0
 () = cos  and P1

1
 () = sin . 

We can calculate the magnetic field or the potential produced by a tilted dipole. In the tilted 

frame of reference we have: 

 










 cosˆ 0

1

2

g
r

a
aV  (65) 

 

where 0

1g  is the magnitude of the tilted dipole and x is the colatitude in the tilted frame of 

reference. From spherical triangle NPD we obtain readily: 

 

 ddd   cossinsincoscoscos  (66) 

 

where d is the longitude of the meridian which contains the tilted dipole and d is the tilt. 

 

Introducing (66) into (65) we get: 
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Identity implies the following relationships: 
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From (68) we obtain: 
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0

1g  defines the "strength" of the tilted dipole, d and d define the orientation. 
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Figure 2 

 

 

In the software developed for INTERBALL and CLUSTER, the dipole routine contains the 

first three harmonics and their secular changes. The three magnetic field components of the 

tilted dipole are: 
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 (70) 

 

The magnetic field of the tilted dipole is performed in the routine dipol for epochs greater 

than 1995 with the coefficients of DGRF95. The value of the tilted dipole 0

1g  and its 

orientation is calculated in the routine incline. 
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4.9 THE ECCENTRIC DIPOLE 

In the previous paragraph we have shown that the first three harmonics of the geomagnetic 

field could be replaced by a tilted dipole. It is possible to show (Schmidt, Ref. 2) that three 

additional coefficients (g2
0
, h2

1
, g2

1
) of the geomagnetic potential can vanish through a 

translation of the tilted dipole. A nice solution was obtained (Bernard et al. Ref. 3) using the 

tools of Quantum Mechanics, namely the Wigner formulae for the rotation of spherical 

harmonics. Spherical harmonics in Quantum Mechanics can be expressed in the form: 
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where (-1)
m
 is a phase factor. Thus  
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Taking into account (30) and (71) we get: 
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This formula can be compacted by summing between - n and + n. We obtain: 
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Trough two rotations, the spherical harmonics will be functions of angles ,  different from 

angles , . To get the same potential we still have the following equation must be satisfied: 
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where the Gn
m and Hn

m are the coefficients in the tilted reference system and the Yn
m (, ) are 

the related spherical harmonics. The relation between the spherical harmonics is obtained with 

the Wigner formula (Messiah, Ref.  4): 
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where   
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where summation is over 1 +  terms, where  is the smallest number between n  m, '' mn  . 

 and  are defined as 
2

sin


 , 
2

cos


 , (figure 3). 
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Figure 3 

 

Inserting (76) into (75) and multiplying by the conjugate spherical harmonic function Yn
k* (, 

) we obtain: 

 

   





















nm

nm

n

mk

m

m

n

m

n

m

n

k

n

k

n

k

n R
m

m
h

m

m
igBiHGB ,  (78) 

 

Taking the conjugate of (78) and performing the addition, we get: 
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where  R Rk m
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Taking into account the symmetry properties we get: 
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In order to obtain the Hn
k we use equation (77) again. Subtracting the complex conjugate to 

(77) one obtains: 
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These general relationships, can be applied to the first three harmonics of the geomagnetic 

potential. If we set  = 0, we get: 
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Angles  and  can be chosen for avanishing of the coefficients G1
1
 and H1

1
. We obtain: 
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If we compare (69) and (83) we deduce that d = -  and d = - . For the three other 

harmonics, G2
0
, G2

1
, H2

1
 we get: 

 

     22

2

2

2

1

2

1

2

220

2

0

2 sin2sin2cos
4

3
2sinsincos

4

3
sin

2

1
cos shghggG 










 

    2sin2cos2sin
2

1
sincos2cos2sin

4

3 2

2

2

2

1

2

1

2

0

2

1

2 hghggG   (84) 
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It is possible to calculate the translation of the tilted dipole which will cancel G2
0
, G2

1
, H2

1
. 

The new dipole remains parallel to the old dipole in this translation (fig. 4). 
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Figure 4 

 

In the old frame of reference a point P is defined by its coordinates (r, , ). In the new frame 

of reference the point P is defined by the coordinates (R, , ). The translation is defined by 

the vector or


 in the direction (o, o). If the translation cancels the three higher harmonics we 

have: 
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In this formula 0

1G  is the coefficient in the eccentric frame of reference. It is possible to 

calculate R as a function of r and ro. We get: 
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Where  is the diedral angle between vectors or


 and r


. From spherical trigonometry it is 

easy to calculate cos : 
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Introducing these two equations in the left member of equation (85) and linearizing we get: 
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Identifying members with same trigonometric lines we get: 
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which completely define the translation in the tilted reference frame. The orientation and the 

displacement of the eccentered dipole are calculated in routine testdipex2. This routine uses 

incline for the calculation of the tilted dipole plus two other routines not described in the 

MAGLIB reference manual (for specialists only). 

 

 



 

  52  

4.10 CALCULATION OF THE MAGNETIC FIELD COMPONENTS 
NEAR THE SURFACE OF THE EARTH 

If a point P is near the surface of the Earth, it is sometimes interesting to calculate the 

components of the Earth's magnetic field near the Earth's surface. We calculate the 

relationship between the geodetic latitude and the geocentric latitude. If a  and b  are the 

semi-major axis and the semi-minor axis of the Earth's ellipsoid at the Earth's surface we 

have: 
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z
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x
 (88) 

 

We can derive the components of the normal to the ellipsoid surface using the gradient 

formula: 
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The normal is defined as N   
 

 

 

From the following figure we have: 
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From usual trigonometric formulae: 
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Using (91) we get: 2
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(93) 

 

We also have x = a cos, z = b sin 

we get easily: 2
 = a

2
 cos

2 + b
2
 sin

2 

 

with: 
2

2
2 1

a

b
e   we obtain    222222 sin1cos eaa   

 

thus:  22 sin1 ea   
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The coordinates of point P are: 
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Figure 5 

 

The geocentric distance r and the colatitude  of point P are: 
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The angle  between the local vertical and the geocentric direction is: 

 

 90  (96) 

 

 is positive for  positive and  is negative for  negative. It is possible to calculate the 

vertical and the horizontal components of the Earth magnetic field. If X is the component 

toward the north, Y the component toward the east and Z the vertical component, we have: 
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Figure 6 

 

The horizontal component H is defined as: 

 
22 YXH   (98) 

 

The declination D is defined by: 
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The inclination I is defined as: 

 

H

Z
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4.11 DIPOLE MAGNETIC FIELD IN CARTESIAN COORDINATES 

For some applications it is useful to calculate the three components of the magnetic field in a 

cartesian coordinate system. The general expression of the dipole potential is: 
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  (101) 

 

where  is the colatitude and r is the radial distance. In a cartesian coordinate system with axis 

z along the dipole axis, the colatitude  can be expressed as  = a cos(z/r) 

 

V can be rewritten as: 
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Taking the partial derivatives: 
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We obtain the three components of the magnetic field in a cartesian coordinate system : 
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The dipole magnetic field is calculated in a rectangular coordinate system in the routine 

dipols. 

TABLES OF INTERNAL MAGNETIC FIELD COEFFICIENTS  

The following tables give the coefficients for the internal magnetic field since epoch 1945 in 

two forms, the original way compacting the g and the h in one matrix in the software, and our 

new approach which involves two matrices in the software for the g and the h. The more up-

to-date coefficients are provisory and are provided with their secular variations.  

For sake of simplicity we have provided not up-to-date modules with their secular variations. 

For example if a new set of coefficients is given for the year N, the software for the module 

which corresponds to year N-5 will receive definitive coefficients, but no secular variations. 

In this case these secular variations are calculated, using interpolation between the set for year 

N and the set for year N-5. These secular variations are provisory. At year N+5, these secular 

variations will be definitive as the set of Schmidt coefficients for year N will be definitive. 

For example in 2010, Schmidt coefficients for the interim geomagnetic field will be given as 

well as the secular variations. Schmidt coefficients for 2005 Epoch will be definitive. The 

secular variations are not given but can be calculated using the sets of 2010 and 2005. In 2015 

the coefficients of 2010 will be definitive, thus the calculation of the secular variations for 

2005 will give definitive secular variations. 

For sake of simplicity the routine which involve a multiple set of coefficients will be updated 

when a new set of definitive coefficients will be available. For example modules igrf95-05 

will be transformed in dgrf95-05 in 2010 as the coefficients for epoch 2005 will be definitive. 

We suggest to update this routine again in 2015 adding the set of definitive coefficients 

corresponding to epoch 2010. To dgrf95-05 will correspond chp95-05 in 2010.  
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CHP15 (Interim coefficients) 

 

data lg/ 

-294420,-15010,47971,-24451,30129,-28456,16767,-6419,13507,-23523,-1153,12256,2449, 

5820,-5384,9076,8137,2833,1204,-1887,-3349,1809,704,-3295,-2326,3601,473, 

1924,1970,-1409,-1193,-1575,160,41,1002,700,677,-208,727,332,-1299, 

589,-289,-667,132,73,-709,626,816,-761,-541,-68,-195,518,57, 

150,244,94,34,-28,-274,68,-22,242,88,101,-169,-183,-32, 

133,-206,-146,134,162,117,57,-159,-91,-20,21,54,88,-216, 

31,108,-33,118,7,-68,-133,-69,-1,78,87,10,-91,-40, 

-105,84,-19,-63,32,1,-4,5,46,-5,44,18,-79,-7, 

-6,21,-42,24,-28,-18,-12,-36,-87,31,-15,-1,-23,20, 

20,-7,-8,-11,6,8,-7,-2,2,-22,17,-14,-2,-25, 

4,-20,35,-24,-19,-2,-11,4,4,12,19,-8,-22,9, 

3,1,7,5,-1,-3,3,-4,2,2,-9,-9,-1,0, 

7,0,-9,-9,4,4,5,16,-5,-5,10,-12,-2,-1, 

8,4,-1,-1,3,4,1,5,5,-3,-4,-4,-3,-8/ 

 

 

CHP15 - SECULAR VARIATION (Interim coefficients) 

 

data lgt/ 

103,181,-266,-87,-33,-274,21,-141,34,-55,82,-7,-4, 

-101,18,-7,2,-13,-91,53,41,29,-43,-52,-2,5,6, 

-13,17,-1,-12,14,34,39,0,-3,-1,0,-7,-21,21, 

-7,-12,2,3,9,16,10,3,-2,8,-5,4,13,-2, 

1,-3,-6,-6,-8,1,2,-2,2,0,-3,-6,3,5, 

1,-2,5,4,-2,1,-3,-4,3,3,0,0,0,0, 

112*0/ 
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CHP10 (Definitive coefficients) 

 

data lg/ 

-2949657,-158642,494426,-239606,302634,-270854,166817,-57573,133985,-232654,-16040, 

123210,25175, 

63373,-53703,91266,80897,28648,16658,-21103,-35683,16446,8940,-30972,-23087,35729, 

4458, 

20026,18901,-14105,-11806,-16317,-1,-803,10104,7278,6869,-2090,7592,4418,-14140, 

6154,-2283,-6626,1310,302,-7809,5540,8044,-7500,-5780,-455,-2120,4524,654, 

1400,2496,1046,703,164,-2761,492,-328,2441,821,1084,-1450,-2003,-559, 

1183,-1934,-1741,1161,1671,1085,696,-1405,-1074,-354,164,550,945,-2054, 

345,1151,-527,1275,313,-714,-1238,-742,-76,797,843,214,-842,-608, 

-1008,701,-194,-624,273,89,-10,-107,471,-16,444,245,-722,-33, 

-96,213,-395,309,-199,-103,-197,-280,-831,305,-148,13,-203,167, 

165,-66,-51,-176,54,85,-79,-39,37,-251,179,-127,12,-211, 

75,-194,375,-186,-212,-21,-87,30,27,104,213,-63,-249,95, 

49,-11,59,52,0,-39,13,-37,27,21,-86,-77,-23,4, 

87,-9,-89,-87,31,30,42,166,-45,-59,108,-114,-31,-7, 

78,54,-18,10,38,49,2,44,42,-25,-26,-53,-26,-79 / 

 

 

CHP10 - SECULAR VARIATION (Interim calculated secular variations) 

 

data lgt/ 

10914,17084,-29432,-9808,-2688,-27412,1706,-13234,2170,-5152,9020,-1300,-1370, 

-10346,-274,-1012,946,-636,-9236,4466,4386,3288,-3800,-3956,-346,562,544, 

-1572,1598,30,-248,1134,3202,2426,-168,-556,-198,20,-644,-2196,2300, 

-528,-1214,-88,20,856,1438,1440,232,-220,740,-450,340,1312,-168, 

200,-112,-212,-726,-888,42,376,216,-42,118,-148,-480,346,478, 

294,-252,562,358,-102,170,-252,-370,328,308,92,-20,-130,-212, 

-70,-142,394,-190,-486,68,-184,104,132,-34,54,-228,-136,416, 

-84,278,8,-12,94,-158,-60,314,-22,-68,-8,-130,-136,-74, 

72,-6,-50,-138,-162,-154,154,-160,-78,10,-4,-46,-54,66, 

70,-8,-58,132,12,-10,18,38,-34,62,-18,-26,-64,-78, 

-70,-12,-50,-108,44,2,-46,20,26,32,-46,-34,58,-10, 

-38,42,22,-4,-20,18,34,-6,-14,-2,-8,-26,26,-8, 

-34,18,-2,-6,18,20,16,-12,-10,18,-16,-12,22,-6, 

4,-28,16,-40,-16,-18,16,12,16,-10,-28,26,-8,-2 / 
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CHP05 (Definitive coefficients) 

 

data lg/ 

-2955463, -166905, 507799, -233724, 304769, -25945, 165776, -51543, 13363, -230583,  

19886, 124639, 26972, 67251, -52472, 92055, 79796, 28207, 21065, -22523, -37986, 14515, 

10000, -30536, -22700, 35441, 4272, 20895, 18025, -13654, -12345, -16805, -1957, -1355, 

10385, 736, 6956,  -2033, 7674, 5475, -15134, 6363, -1458, -6353, 1458, 024, -8636, 5094, 

7988, -7446, -6114, -165, -2257, 3873, 682, 123, 2535, 937, 1093, 542, -2632, 194, -464, 248, 

762, 112, -1173, -2088, -688, 983, -1811, -1971, 1017, 1622, 936, 761, -1125, -1276, -487,  

-006, 558, 976, -2011, 358, 1269, -694, 1267, 501, -672, -1076, -816, -125, 81, 876, 292,  

-666, -773, -922, 601, -217, -612, 219, 142, 01, -235, 446, -015, 476, 306, -658, 029, -101, 

206, -347, 377, -086, -021, -231, -209, -793, 295, -16, 026, -188, 144, 144, 077, -031, -227, 

029, 09, -079, -058, 053, -269, 18, -108, 016, -158, 096, -19, 399, -139, -215, -029, -055, 021, 

023, 089, 238, -038, -263, 096, 061, -03, 04, 046, 001, -035, 002, -036, 028, 008, -087, -049,  

034, -008, 088, -016, -088, -076, 03, 033, 028, 172, -043, -054, 118, -107, -037, -004, 075, 

063, -026, 021, 035, 053, -005, 038, 041, -022, -01, -057, -018, -082/ 

 

 

CHP05 - SECULAR VARIATION (Definitive calculated secular variations) 

 

data lgt/ 

11612,16526,-26746,-11764,-4270,-22808,2082,-12060,710,-4142,7692,-2858,-3594,-7756, 

-2462,-1578,2202,882,-8814,2840,4606,3862,-2120,-872,-774,576,372,-1738, 

1752,-902,1078,976,3912,1104,-562,-164,-174,-114,-164,-2114,1988,-418, 

-1650,-546,-296,556,1654,892,112,-108,668,-580,274,1302,-56,340, 

-78,218,-780,-756,-258,596,272,-78,118,-72,-554,170,258,400, 

-246,460,288,98,298,-130,-560,404,266,340,-16,-62,-86,-26, 

-236,334,16,-376,-84,-324,148,98,-26,-66,-156,-352,330,-172, 

200,46,-24,108,-106,-40,256,50,-2,-64,-122,-128,-124,10, 

14,-96,-136,-226,-164,68,-142,-76,20,24,-26,-30,46,42, 

22,-40,102,50,-10,0,38,-32,36,-2,-38,-8,-106,-42, 

-8,-48,-94,6,16,-64,18,8,30,-50,-50,28,-2,-24, 

38,38,12,-2,-8,22,-2,-2,26,2,-56,22,24,-2, 

14,-2,-22,2,-6,28,-12,-4,-10,-20,-14,12,-6,6, 

-18,16,-22,6,-8,14,12,2,-6,-32,8,-16,6 / 
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CHP00 (Definitive coefficients) 

 

data lg/ 

-296194,-17282,51861,-22677,30684,-24816,16709,-4580,13396, -22880, -2276, 12521, 

2934, 7145, -4911, 9323, 7868, 2726, 2500,-2319, -4030, 1198, 1113, -3038, -2188, 3514, 

438, 2223, 1719, -1304, -1331,-1686,-393,-129,1063, 723, 682,-174, 742,637, -1609, 651,-59, 

-612, 169, 7, -904, 438, 790,-740, -646, 0, -242, 333, 62, 91, 240,69,148,73, -254, -12, -58, 

244,66,119, -92,-215, -79,85, -166,-215,91,155,70,89,-79,-149,-70,-21, 50,94,-197,30, 134,    

-84, 125,63,-62, -89, -84, -15, 84,93,38,-43,-82,-82,48,-26, -60,17,17,0,-31,40,-5,49,37,-59, 

10, -12,20,-29,42,2,3, -22, -11, -74, 27,-17,1,-19,13,15,-9,-1,-26,1, 9,-7,-7,7,-28,17,-9,1,-12, 

12,   -19, 40, -9,-22,-3, -4, 2, 3, 9, 25, -2,-26,9,7,-5,3,3,0,-3,0, -4,3,-1,-9,-2,-4,-4,8,-2,-9, -

9,3,2,1, 18, -4, -4,13,-10,-4, -1,7,7,-4, 3, 3, 6,-1,3,4, -2,0,-5,1,-9/ 

 

 

CHP00 - SECULAR VARIATION (Definitive calculated secular variations) 

 

data lgt/ 

1295, 1183, -2162, -1391, -414, -2258, -263, -1149, -066, -357, 575, -114, -474, -84, -672,  

-235, 223, 189, -787, 133, 463, 507, -226, -031, -164, 06, -022, -267, 167, -123, 193, 011, 

395, -013, -049, 026, 027, -059, 051, -179, 191, -029, -174, -047, -046, -009, 081, 143, 018,  

-009, 069, -033, 033, 109, 012, 064, 027, 049, -077, -038, -018, 063, 023, 008, 02, -014, -051, 

012, 02, 027, -03, 036, 021, 014, 047, -026, -067, 043, 043, 041, 012, 007, -008, 012, -014, 

029, 003, -026, -01, -037, 005, 005, -006, -011, -018, -047, 009, -02, 024, 009, -002, 01, -006, 

002, 015, 009, 007, -003, -013, -014, -014, 004, 001, -011, -009, -021, -01, -002, -02, -011, 

005, 002, 003, 000, 003, -001, 003, -004, 007, 004, 000, -002, 002, -003, 002, 002, -004, 001, 

-008, -005, 000, 000, -01, 001, 000, -003, 000, -001, 000, -002, -004, -001, 001, -002, 004, 

002, 003, 000, -001, 000, 001, 000, 004, 001, -006, 001, 006, 002, 001, 000, 003, 000, 003, 

004, -002, -001, -003, -002, -001, 001, 001, 001, -001, 003, -002, 001, -001, 001, 002, 000, 

000, -002, -001, -006, 002/ 
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CHP95 (Definitive coefficients) 

 

data lg/ 

-296920 -17840, 53060, -22000, 30700, -23660, 16810, -4130, 13350,-22670, -2620, 12490, 

3020, 7590, -4270, 9400, 7800, 2620, 2900, -2360, -4180, 970, 1220, -3060, -2140, 3520, 

460, 2350, 1650, -1180, -1430, -1660, -550, -170, 1070, 680, 670, -170, 680, 720, -1700, 670, 

-10, -580, 190, 10, -930, 360, 770, -720, -690, 10, -250, 280, 40, 50, 240, 40, 170, 80, -240,    

-20, -60, 250, 60, 110, -60, -210, -90, 80, -140, -230, 90, 150, 60, 110, -50, -160, -70, -40, 40, 

90, -200, 30, 150, -100, 120, 80, -60, -80, -80, -10, 80, 100, 50, -20, -80, -80, 30, -30, -60, 10, 

20, 0, -40, 40, -10, 50, 40, -50, 20, -10, 20, -20, 50, 10, 10, -20, 0, -70,75*0/ 

 

CHP95 - SECULAR VARIATION (Definitive calculated secular variations) 

 

data lgt/ 

1452,1116,-2398,-1354,-32,-2312,-202,-900,92,-420, 688,62,-172,-890,-1282,-154,136,212,   

-800, 82, 300, 56, -214, 44, -96,-12,-44,-254,138,-248, 198, -52, 314, 82, -14, 86, 24, -8, 124, 

-166, 182, -38, -98, -64, -42, -6, 52, 156, 40, -40, 88, -20, 16, 106, 44, 82, 0, 58, -44, -14, -28, 

16, 4, -12, 12, 18, -64, -10, 22, 10, -52, 30, 2, 10, 20, -42, -58, 22, 0, 38, 20, 8, 6, 0, -32, 32, 

10, -34, -4, -18, -8, -10, 8, -14, -24, -46, -4, -4, 36, 8, 0, 14, -6, 0, 18, 0, 10, -2, -6, -18, -20, -4, 

0, -18, -16, -16, -14, -4, -22, -8, 54, -34, 2, -38, 26, 30, -18, -2, -52,2, 18, -14, -14, 14, -56, 34, 

-18, 2, -24, 24, -38, 80, -18, -44, -6, -8, 4, 6, 18, 50, -4, -52, 18, 14, -10, 6, 6, 0, -6, 0, -8, 6,     

-2,-18, -4, -8, -8, 16, -4, -18, -18, 6, 4, 2, 36, -8, -8, 26, -20, -8, -2, 14, 14,-8, 6, 6, 12, -2, 6, 8, 

-4, 0, -10, 2, -18/ 
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CHP90 (Definitive coefficients) 

 

data lg/ 

-29775,-1848,5406,-2131,3059,-2279,1686,-373,1314,-2239, -284, 1248, 293, 802,-352, 939, 

780, 247, 325, -240, -423, 84, 141, -299,-214, 353, 46, 245, 154, -109, -153, -165, -69, -36, 

97, 61, 65, -16, 59, 82, -178, 69, 3, -52, 18, 1, -96, 24, 77, -64, -80, 2, -26, 26, 0, -1, 21, 5, 17, 

9, -23, 0, -4, 23, 5, 10, -1, -19, -10, 6, -12, -22, 3, 12, 4, 12, 2, -16, -6, -10, 4, 9, -20, 1, 15, -12, 

11, 9, -7, -4, -7, -2, 9, 7, 8, 1, -7, -6, 2, -3, -4, 2, 2, 1, -5, 3, -2, 6, 4, -4, 3, 0, 1, -2, 3, 3, 3, -1, 0, 

-6/ 

 

CHP85 (Definitive coefficients) 

 

data lg/ 

-29873,-1905, 5500,-2072, 3044,-2197, 1687, -306, 1296,-2208, -310, 1247, 284, 829, -297, 

936, 780, 232, 361, -249, -424, 69, 170, -297, -214, 355, 47, 253, 150, -93, -154, -164, -75,     

-46, 95, 53, 65, -16, 51, 88, -185, 69, 4, -48, 16, -1, -102, 21, 74, -62, -83, 3, -27, 24, -2, -6, 

20, 4, 17, 10, -23, 0, -7, 21, 6, 8, 0, -19, -11, 5, -9, -23, 4, 11, 4, 14, 4, -15, -4, -11, 5, 10, -21, 

1, 15, -12, 9, 9, -6, -3, -6, -1, 9, 7, 9, 1, -7, -5, 2, -4, -4, 1, 3, 0, -5, 3, -2, 6, 5, -4, 3, 0, 1, -1, 2, 

4, 3, 0, 0, -6/ 

 

CHP80 (Definitive coefficients) 

 

data lg/ 

-29992, -1956, 5604, -1997, 3027, -2129, 1663, -200, 1281, -2180, -336, 1251, 271, 833,-252, 

938, 782, 212, 398, -257, -419, 53, 199, -297, -218, 357, 46, 261, 150, -74, -151, -162, -78-48, 

92, 48, 66, -15, 42, 93, -192, 71, 4, -43, 14, -2, -108, 17, 72, -59, -82, 2, -27, 21, -5, -12, 16, 1, 

18,11,-23, -2,-10, 18, 6, 7, 0, -18, -11, 4, -7, -22, 4, 9, 3, 16, 6, -13, -1, -15, 5, 10, -21, 1, 16,    

-12, 9, 9, -5, -3, -6,-1, 9, 7, 10, 2, -6, -5, 2, -4, -4, 1, 2, 0, -5, 3, -2, 6, 5, -4, 3, 0, 1, -1, 2, 4, 3, 

0, 0, -6/ 

 

CHP75 (Definitive coefficients) 

 

data lg/ 

-30100,-2013, 5675,-1902, 3010,-2067,1632, -68,1276,-2144, -333, 1260, 262, 830, -223, 

946, 791, 191, 438, -265, -405, 39, 216, -288, -218, 356, 31, 264, 148, -59, -152, -159, -83,     

-49, 88, 45, 66, -13, 28, 99, -198, 75, 1, -41, 6, -4,-111, 11, 71, -56, -77, 1, -26, 16, -5, -14, 10, 

0, 22, 12, -23, -5, -12, 14, 6, 6, -1, -16, -12, 4, -8, -19, 4, 6, 0, 18, 10, -10, 1, -17, 7, 10, -21, 2, 

16, -12, 7, 10, -4,-1,-5,-1, 10, 4,11, 1, -3, -2, 1, -3, -3, 1, 2, 1, -5, 3, -2, 4, 5, -4, 4, -1, 1, -1, 0, 

3, 3, 1, -1, -5/ 

 

CHP70 (Definitive coefficients) 

 

data lg/ 

-30220, -2068, 5737, -1781,3000,-2047,1611, 25,1287, -2091, -366, 1278, 251, 838, -196, 

952, 800, 167, 461, -266, -395, 26, 234, -279, -216, 359, 26, 262, 139, -42, -139, -160, -91,     

-56, 83, 43, 64, -12, 15, 100, -212, 72, 2, -37, 3, -6,-112, 1, 72, -57, -70, 1, -27, 14, -4, -22, 8,   

-2, 23, 13, -23, -2, -11, 14, 6, 7, -2, -15, -13, 6, -3, -17, 5, 6, 0, 21, 11, -6, 3, -16, 8, 10, -21, 2, 

16, -12, 6, 10,-4, -1, -5, 0, 10, 3, 11, 1, -2, -1, 1, -3, -3, 1, 2, 1, -5, 3, -1, 4, 6, -4, 4, 0, 1, -1, 0, 

3, 3, 1, -1, -4/ 
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CHP65 (Definitive coefficients) 

 

data lg/ 

-30334,-2119, 5776,-1662, 2997,-2016, 1594, 114, 1297,-2038, -404, 1292, 240, 856, -165, 

957, 804, 148, 479, -269, -390, 13, 252, -269, -219, 358, 19, 254, 128, -31, -126, -157, -97,     

-62, 81, 45, 61, -11, 8, 100, -228, 68, 4, -32, 1, -8, -111, -7, 75, -57, -61, 4, -27, 13, -2, -26, 6, 

-6, 26, 13, -23, 1, -12, 13, 5, 7, -4, -12, -14, 9, 0, -16, 8, 4, -1, 24, 11, -3, 4, -17, 8, 10, -22, 2, 

15, -13, 7, 10, -4, -1, -5, -1, 10, 5, 10, 1, -4, -2, 1, -2, -3, 2, 2, 1, -5, 2, -2, 6, 4, -4, 4, 0, 0, -2, 2, 

3, 2, 0, 0, -6/ 

 

CHP60 (Definitive coefficients) 

 

data lg/ 

-30421,-2169, 5791,-1555, 3002,-1967, 1590, 206, 1302,-1992, -414, 1289, 224, 878, -130, 

957, 800, 135, 504, -278, -394, 3, 269, -255, -222, 362, 16, 242, 125, -26, -117, -156, -114,     

-63, 81, 46, 58, -10, 1, 99, -237, 60, -1, -20, -2, -11, -113, -17, 67, -56, -55, 5, -28, 15, -6, -32, 

7, -7, 23, 17, -18, 8, -17, 15, 6, 11, -4, -14, -11, 7, 2, -18, 10, 4, -5, 23, 10, 1, 8, -20, 4, 6, -18, 

0, 12, -9, 2, 1, 0, 4, -3, -1, 9, -2, 8, 3, 0, -1, 5, 1, -3, 4, 4, 1, 0, 0, -1, 2, 4, -5, 6, 1, 1, -1, -1, 6, 2, 

0, 0, -7/ 

 

CHP55 (Definitive coefficients) 

 

data lg/ 

-30500,-2215, 5820,-1440, 3003,-1898, 1581, 291, 1302,-1944, -462, 1288, 216, 882, -83, 

958, 796, 133, 510, -274, -397, -23, 290, -230, -229, 360, 15, 230, 110, -23, -98, -152, -121,   

-69, 78, 47, 57, -9, 3, 96, -247, 48, -8, -16, 7, -12, -107, -24, 65, -56, -50, 2, -24, 10, -4, -32, 8, 

-11, 28, 9, -20, 18, -18, 11, 9, 10, -6, -15, -14, 5, 6, -23, 10, 3, -7, 23, 6, -4, 9, -13, 4, 9, -11, -4, 

12, -5, 7, 2, 6, 4, -2, 1, 10, 2, 7, 2, -6, 5, 5, -3, -5, -4, -1, 0, 2, -8, -3, -2, 7, -4, 4, 1, -2, -3, 6, 7,  

-2, -1, 0, -3/ 

 

CHP50 (Definitive coefficients) 

 

data lg/ 

-30554,-2250, 5815,-1341, 2998,-1810, 1576, 381, 1297,-1889, -476, 1274, 206, 896, -46, 

954, 792, 136, 528, -278, -408, -37, 303, -210, -240, 349, 3, 211, 103, -20, -87, -147, -122,     

-76, 80, 54, 57, -1, 4, 99, -247, 33, -16, -12, 12, -12, -105, -30, 65, -55, -35, 2, -17, 1, 0, -40, 

10, -7, 36, 5, -18, 19, -16, 22, 15, 5, -4, -22, -1, 0, 11, -21, 15, -8, -13, 17, 5, -4, -1, -17, 3, -7,   

-24, -1, 19, -25, 12, 10, 2, 5, 2, -5, 8, -2, 8, 3, -11, 8, -7, -8, 4, 13, -1, -2, 13, -10, -4, 2, 4, -3, 

12, 6, 3, -3, 2, 6, 10, 11, 3, 8/ 

 

CHP45 (Definitive coefficients) 

 

data lg/ 

-30594,-2285, 5810,-1244, 2990,-1702, 1578, 477, 1282,-1834, -499, 1255, 186, 913, -11, 

944, 776, 144, 544, -276, -421, -55, 304, -178, -253, 346, -12, 194, 95, -20, -67, -142, -119,    

-82, 82, 59, 57, 6, 6, 100, -246, 16, -25, -9, 21, -16, -104, -39, 70, -40, -45, 0, -18, 0, 2, -29, 6, 

-10, 28, 15, -17, 29, -22, 13, 7, 12, -8, -21, -5, -12, 9, -7, 7, 2, -10, 18, 7, 3, 2, -11, 5, -21, -27, 

1, 17, -11, 29, 3, -9, 16, 4, -3, 9, -4, 6, -3, 1, -4, 8, -3, 11, 5, 1, 1, 2, -20, -5, -1, -1, -6, 8, 6, -1,  

-4, -3, -2, 5, 0, -2, -2/ 
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IGRF15 (Interim coefficients) 

 

data lg/ 

10,-294420,-24451,13507,9076,-2326,700,816,242,54,-19,31,-19,0, 

47971,-15010,30129,-23523,8137,3601,677,-761,88,88,-63,-15,-2,-9, 

-28456,-6419,16767,12256,1204,1924,727,-68,-169,31,1,-23,4,4, 

-1153,2449,-5384,5820,-3349,-1409,-1299,518,-32,-33,5,20,12,5, 

2833,-1887,1809,-3295,704,-1575,-289,150,-206,7,-5,-8,-8,-5, 

473,1970,-1193,160,1002,41,132,94,134,-133,18,6,9,10, 

-208,332,589,-667,73,626,-709,-28,117,-1,-7,-7,1,-2, 

-541,-195,57,244,34,-274,-22,68,-159,87,21,2,5,8, 

101,-183,133,-146,162,57,-91,21,-20,-91,24,17,-3,-1, 

-216,108,118,-68,-69,78,10,-40,84,-105,-18,-2,-4,3, 

32,-4,46,44,-79,-6,-42,-28,-12,-87,-36,4,2,1, 

-1,20,-7,-11,8,-2,-22,-14,-25,-20,-24,35,-9,5, 

-11,4,19,-22,3,7,-1,3,2,-9,-1,7,0,-4, 

-9,4,16,-5,-12,-1,4,-1,4,5,-3,-4,-8,-3/ 

 

 

IGRF15 - SECULAR VARIATION (Interim coefficients) 

 

data lgt/ 

10,103,-87,34,-7,-2,-3,3,2,0,0,0,0,0, 

-266,181,-33,-55,2,5,-1,-2,0,0,0,0,0,0, 

-274,-141,21,-7,-91,-13,-7,-5,-6,0,0,0,0,0, 

82,-4,18,-101,41,-1,21,13,5,0,0,0,0,0, 

-13,53,29,-52,-43,14,-12,1,-2,0,0,0,0,0, 

6,17,-12,34,0,39,3,-6,4,0,0,0,0,0, 

0,-21,-7,2,9,10,16,-8,1,0,0,0,0,0, 

8,4,-2,-3,-6,1,-2,2,-4,0,0,0,0,0, 

-3,3,1,5,-2,-3,3,0,3,75*0/  
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DGRF10 (Definitive coefficients) 

 

data lg/ 

100,-2949657,-239606,133985,91266,-23087,7278,8044,2441,550,-194,305,-212,-9, 

494426,-158642,302634,-232654,80897,35729,6869,-7500,821,945,-624,-148,-21,-89, 

-270854,-57573,166817,123210,16658,20026,7592,-455,-1450,345,89,-203,30,31, 

-16040,25175,-53703,63373,-35683,-14105,-14140,4524,-559,-527,-107,165,104,42, 

28648,-21103,16446,-30972,8940,-16317,-2283,1400,-1934,313,-16,-51,-63,-45, 

4458,18901,-11806,-1,10104,-803,1310,1046,1161,-1238,245,54,95,108, 

-2090,4418,6154,-6626,302,5540,-7809,164,1085,-76,-33,-79,-11,-31, 

-5780,-2120,654,2496,703,-2761,-328,492,-1405,843,213,37,52,78, 

1084,-2003,1183,-1741,1671,696,-1074,164,-354,-842,309,179,-39,-18, 

-2054,1151,1275,-714,-742,797,214,-608,701,-1008,-103,12,-37,38, 

273,-10,471,444,-722,-96,-395,-199,-197,-831,-280,75,21,2, 

13,167,-66,-176,85,-39,-251,-127,-211,-194,-186,375,-77,42, 

-87,27,213,-249,49,59,0,13,27,-86,-23,87,4,-26, 

-87,30,166,-59,-114,-7,54,10,49,44,-25,-53,-79,-26 / 

 

 

IGRF10 - SECULAR VARIATION (Interim calculated secular variations) 

 

data lgt/ 

1000,10914,-9808,2170,-1012,-346,-556,232,-42,-20,8,10,44,18, 

-29432,17084,-2688,-5152,946,562,-198,-220,118,-130,-12,-4,2,-2, 

-27412,-13234,1706,-1300,-9236,-1572,-644,-450,-480,-70,-158,-54,20,18, 

9020,-1370,-274,-10346,4386,30,2300,1312,478,394,314,70,32,16, 

-636,4466,3288,-3956,-3800,1134,-1214,200,-252,-486,-68,-58,-34,-10, 

544,1598,-248,3202,-168,2426,20,-212,358,-184,-130,12,-10,-16, 

20,-2196,-528,-88,856,1440,1438,-888,170,132,-74,18,42,22, 

740,340,-168,-112,-726,42,216,376,-370,54,-6,-34,-4,4, 

-148,346,294,562,-102,-252,328,92,308,-136,-138,-18,18,16, 

-212,-142,-190,68,104,-34,-228,416,278,-84,-154,-64,-6,-16, 

94,-60,-22,-8,-136,72,-50,-162,154,-78,-160,-70,-2,16, 

-46,66,-8,132,-10,38,62,-26,-78,-12,-108,-50,-26,16, 

-46,26,-46,58,-38,22,-20,34,-14,-8,26,-34,-8,-28, 

-6,20,-12,18,-12,-6,-28,-40,-18,12,-10,26,-2,-8 /  
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DGRF05 (Definitive coefficients) 

 

data lg/ 

100,-2955463,-233724,13363,92055,-22700,736, 7988,248,558,-217,295,-215,-016,507799, 

-166905,304769,-230583,79796,35441,6956,-7446,762,976,-612,-16,-029,-088,-25945, 

-51543,165776,124639,21065,20895,7674,-165,-1173,358,142,-188,021,03,-19886,26972, 

-52472,67251,-37986,-13654,-15134,3873,-688,-694,-235,144,089,028,28207,-22523,14515, 

-30536,10000,-16805,-1458,123,-1811,501,-015,-031,-038,-043,4272,18025,-12345,-1957, 

10385,-1355,1458,937,1017,-1076,306,029,096,118,-2033,5475,6363,-6353,024,5094,-8636, 

542,936,-125,029,-079,-03,-037,-6114,-2257,682,2535,1093,-2632,-464,194,-1125,876,206, 

053,046,075,112,-2088,983,-1971,1622,761,-1276,-006,-487,-666,377,18,-035,-026,-2011, 

1269,1267,-672,-816,81,292,-773,601,-922,-021,016,-036,035,219,01,446,476,-658,-101, 

-347,-086,-231,-793,-209,096,008,-005,026,144,-077,-227,09,-058,-269,-108,-158,-19,-139, 

399,-049,041,-055,023,238,-263,061,04,001,002,028,-087,-034,088,-008,-01,-076,033,172, 

-054,-107,-004,063,021,053,038,-022,-057,-082,-018/  

 

 

 

DGRF05 - SECULAR VARIATION (Definitive calculated secular variations) 

 

data lgt/ 

1000,11612,-11764,710,-1578,-774,-164,112,-78,-16,46,20,6,14, 

-26746,16526,-4270,-4142,2202,576,-174,-108,118,-62,-24,24,16,-2, 

-22808,-12060,2082,-2858,-8814,-1738,-164,-580,-554,-26,-106,-30,18,2, 

7692,-3594,-2462,-7756,4606,-902,1988,1302,258,334,256,42,30,28, 

882,2840,3862,-872,-2120,976,-1650,340,-246,-376,-2,-40,-50,-4, 

372,1752,1078,3912,-562,1104,-296,218,288,-324,-122,50, -2,-20, 

-114,-2114,-418,-546,556,892,1654,-756,298,98,-124,0,38,12, 

668,274,-56,-78,-780,-258,272,596,-560,-66,14,-32,12,6, 

-72,170,400,460,98,-130,404,340,266,-352,-136,-2,-8,16, 

-86,-236,16,-84,148,-26,-156,330,200,-172,-164,-8,-2,6, 

108,-40,50,-64,-128,10,-96,-226,68,-76,-142,-42,26,14, 

-26,46,22,102,-10,38,36,-38,-106,-8,-94,-48,-56,2, 

-64, 8,-50,28,-24,38,-2,22,-2,2,22,-2,24,-32, 

-22,-6,-12,-10,-14,-6,-18,-22,-8,12,-6,8,6,-16 /  
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DGRF00 (Definitive coefficients) 

 

data lg/ 

10, -296194, -22677, 13396, 9323, -2188, 723, 790, 244, 50,-26,27,-22,-2, 51861,-17282, 

30684, -22880, 7868, 3514,682,-740,66,94,-60, -17,-3, -9, -24816, -4580, 16709, 12521, 

2500, 2223,742,0, -92, 30, 17, -19, 2, 3, -2276, 2934, -4911,7145,-4030,-1304,-1609, 333,      

-79, -84,-31,15,9,1, 2726, -2319,1198,-3038,1113,-1686,-59,91,-166,63,-5,-1,-2,-4, 

438,1719,-1331,-393,1063, -129, 169, 69,91,-89,37,1,9,13, -174,637,651,-612,7,438, -904, 

73,70,-15,10,-7,-5,-4, -646, -242, 62, 240, 148, -254,-58,-12,-79,93,20,7,3,7, 119,-215, 85,      

-215, 155, 89,-149,-21,-70,-43,42,17, -3,-4, -197, 134,125,-62,-84,84,38,-82,48,-82,3,1,-4,3, 

17, 0,40,49,-59,-12,-29,2,-22,-74,-11,12, -1,-1, 1,13, -9,-26,9,-7,-28,-9,-12,-19,-9,40,-2,4, -4, 

3,25,-26,7,3,0,0,3,-9,-4,8,-4,0, -9,2,18,-4, -10, -1, 7, 3, 6, 3,-2,-5,-9,1/  

 

 

DGRF00 - SECULAR VARIATION (Definitive calculated secular variations) 

 

data lgt/ 

100,1295,-1391,-066,-235,-164,026,018,008,012,009,005,001,001,-2162,1183,-414,-357, 

223,06,027,-009,02,007,-002,002,000,000,-2258,-1149,-263,-114,-787,-267,051,-033,-051, 

012,-006,000,000,000,575,-474,-672,-84,463,-123,191,109,02,029,015,-001,000,004,189,133, 

507,-031,-226,011,-174,064,-03,-026,007,-004,-004,-001,-022,167,193,395,-049,-013,-046, 

049,021,-037,-013,004,001,-002,-059,-179,-029,-047,-009,143,081,-038,047,005,-014,-002, 

004,001,069,033,012,027,-077,-018,023,063,-067,-011,001,-003,003,001,-014,012,027,036, 

014,-026,043,041,043,-047,-009,002,-001,003,-008,-014,003,-01,005,-006,-018,009,024,-02, 

-01,001,001,001,01,002,009,-003,-014,004,-011,-021,-002,-011,-02,-005,004,001,003,003, 

003,007,000,002,002,-004,-008,000,-01,000,-006,000,-003,-001,-002,-001,-002,002,000,000, 

000,001,001,002,006,-002,003,003,-002,-003,-001,001,-001,-002,-001,002,000,-001,002,-006 

/ 
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DGRF95 (Definitive coefficients) 

 

data lg/ 

10,-296920,-22000,13350,9400,-2140,680,770,250,40,-30,3*0, 53060,-17840,30700, -22670, 

7800,3520,670,-720,60,90,-60,3*0, -23660,-4130,16810,12490,2900,2350,680,10, -60, 30,20, 

3*0, -2620,3020,-4270,7590,-4180,-1180,-1700,280,-90,-100,-40,3*0, 2620,-2360,970,-3060, 

1220,-1660,-10,50,-140,80,-10,3*0, 460,1650,-1430,-550,1070,-170,190, 40, 90, -80, 40, 3*0, 

-170, 720,670,-580,10,360,-930,80,60,-10,20,3*0, -690,-250,40,240,170,-240,-60,-20,-50, 

100, 20,3*0, 110,-210,80,-230,150,110,-160,-40,-70,-20,50,3*0, -200,150,120,-60,-80,80, 

50,-80, 30, -80,10,3*0, 10,0,40,50,-50,-10,-20,10,-20,-70,0,45*0/ 

 

 

DGRF95 - SECULAR VARIATION (Definitive calculated secular variations) 

 

data lgt/ 

100, 1452, -1354, 92, -154, -96, 86, 40, -12, 20, 8, 54, -44, -4, -2398, 1116, -32, -420, 136,     

-12, 24, -40, 12, 8, 0, -34, -6, -18, -2312, -900, -202, 62, -800, -254, 124, -20, -64, 0, -6, -38, 

4, 6, 688, -172, -1282, -890, 300, -248, 182, 106, 22, 32, 18, 30, 18, 2, 212, 82, 456, 44, -214, 

-52, -98, 82, -52, -34, 10, -2, -4, -8, -44, 138, 198, 314, -14, 82, -42, 58, 2, -18, -6, 2, 18, 26,   

-8, -166, -38, -64, -6, 156, 52, -14, 20, -10, -20, -14, -10, -8, 88, 16, 44, 0, -44, -28, 4, 16, -58, 

-14, 0, 14, 6, 14, 18, -10, 10, 30, 10, -42, 22, 38, 0, -46, -16, 34, -6, -8, 6, -32, 10, -4, -8, 8,      

-24, -4, 36, -4, -14, 2, -8, 6, 14, 0, 0, -2, -18, -4, -18, -16, -4, -8, -22, 24, -2, -2, 2, 26, -18, -52, 

18, -14, -56, -18, -24, -38, -18, 80, -4, 8, -8, 6, 50, -52, 14, 6, 0, 0, 6, -18, -8, 16, -8, 0, -18, 4, 

36, -8, -20, -2, 14, 6, 12, 6, -4, -10, -18, 2/ 
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DGRF90 (Definitive coefficients) 

 

data lg/ 

1,-29775,-2131, 1314, 939, -214, 61, 77, 23, 4, -3, 5406, -1848, 3059,-2239, 780, 353, 65,      

-64, 5, 9, -4, -2279, -373, 1686, 1248, 325, 245, 59, 2, -1, 1, 2, -284, 293, -352, 802, -423,       

-109, -178, 26, -10, -12, -5, 247, -240, 84, -299, 141, -165, 3, -1, -12, 9, -2, 46, 154, -153, -69, 

97, -36, 18, 5, 3, -4, 4, -16, 82, 69, -52, 1, 24, -96, 9, 4, -2, 3, -80, -26, 0, 21, 17, -23, -4, 0, 2, 

7, 1, 10, -19, 6, -22, 12, 12, -16, -10, -6, 1, 3, -20, 15, 11, -7, -7, 9, 8, -7, 2, -6, 3, 2, 1, 3, 6, -4, 

0, -2, 3, -1, -6, 0/ 

 

DGRF85 (Definitive coefficients) 

 

data lg/ 

1, -29873, -2072, 1296, 936, -214, 53, 74, 21, 5, -4, 5500, -1905, 3044,-2208, 780, 355, 65,    

-62, 6, 10, -4, -2197, -306, 1687, 1247, 361, 253, 51, 3, 0, 1, 3, -310, 284, -297, 829, -424,      

-93, -185, 24, -11, -12, -5, 232, -249, 69, -297, 170, -164, 4, -6, -9, 9, -2, 47, 150, -154, -75, 

95, -46, 16, 4, 4, -3, 5, -16, 88, 69, -48, -1, 21, -102, 10, 4, -1, 3, -83, -27, -2, 20, 17, -23, -7, 0, 

4, 7, 1, 8, -19, 5, -23, 11, 14, -15, -11, -4, 1, 2, -21, 15, 9, -6, -6, 9, 9, -7, 2, -5, 3, 1, 0, 3, 6, -4, 

0, -1, 4, 0, -6, 0/ 

 

DGRF80 (Definitive coefficients) 

 

data lg/ 

1, -29992, -1997, 1281, 938, -218, 48, 72, 18, 5, -4, 5604, -1956, 3027,-2180, 782, 357, 66,    

-59, 6, 10, -4, -2129, -200, 1663, 1251, 398, 261, 42, 2, 0, 1, 2, -336, 271, -252, 833, -419,      

-74, -192, 21, -11, -12, -5, 212, -257, 53, -297, 199, -162, 4, -12, -7, 9, -2, 46, 150, -151, -78, 

92, -48, 14, 1, 4, -3, 5, -15, 93, 71, -43, -2, 17, -108, 11, 3, -1, 3, -82, -27, -5, 16, 18, -23, -10, 

-2, 6, 7, 1, 7, -18, 4, -22, 9, 16, -13, -15, -1, 2, 2, -21, 16, 9, -5, -6, 9, 10, -6, 2, -5, 3, 1, 0, 3, 6, 

-4, 0, -1, 4, 0, -6, 0/ 

 

DGRF75 (Definitive coefficients) 

 

data lg/ 

1,-30100,-1902, 1276, 946, -218, 45, 71, 14, 7, -3, 5675,-2013, 3010,-2144, 791, 356, 66, -56, 

6, 10, -3, -2067, -68, 1632, 1260, 438, 264, 28, 1, -1, 2, 2, -333, 262, -223, 830,-405, -59,        

-198, 16, -12, -12, -5, 191, -265, 39, -288, 216, -159, 1, -14, -8, 10, -2, 31, 148, -152, -83, 88, 

-49, 6, 0, 4, -1, 5, -13, 99, 75, -41, -4, 11, -111, 12, 0, -1, 4, -77, -26, -5, 10, 22, -23, -12, -5, 

10, 4, 1, 6, -16, 4, -19, 6, 18, -10, -17, 1, 1, 0, -21,16, 7,-4, -5, 10, 11, -3, 1, -2, 3, 1, 1, 3, 4, -4, 

-1, -1, 3, 1,-5, -1/ 

 

DGRF70 (Definitive coefficients) 

 

data lg/ 

1,-30220,-1781, 1287, 952, -216, 43, 72, 14, 8, -3, 5737, -2068, 3000,-2091, 800, 359, 64,      

-57, 6, 10, -3, -2047, 25, 1611, 1278, 461, 262, 15, 1, -2, 2, 2, -366, 251, -196, 838, -395, -42, 

-212, 14, -13, -12, -5, 167, -266, 26, -279, 234, -160, 2, -22, -3, 10, -1, 26, 139, -139, -91, 83, 

-56, 3, -2, 5, -1, 6, -12, 100, 72, -37, -6, 1, -112, 13, 0, 0, 4, -70, -27, -4, 8, 23, -23, -11, -2, 11, 

3, 1, 7, -15, 6, -17, 6, 21, -6, -16, 3, 1, 0, -21, 16, 6, -4, -5, 10, 11, -2, 1, -1, 3, 1, 1, 3, 4, -4, 0,  

-1, 3, 1, -4, -1/ 
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DGRF65 (Definitive coefficients) 

 

data lg/ 

1,-30334,-1662, 1297, 957, -219, 45, 75, 13, 8, -2, 5776, -2119, 2997,-2038, 804, 358, 61,      

-57, 5, 10, -3, -2016, 114, 1594, 1292, 479, 254, 8, 4, -4, 2, 2, -404, 240, -165, 856, -390, -31, 

-228, 13, -14, -13, -5, 148, -269, 13, -269, 252, -157, 4, -26, 0, 10, -2, 19, 128, -126, -97, 81,   

-62, 1, -6, 8, -1, 4, -11, 100, 68, -32, -8, -7, -111, 13, -1, -1, 4, -61, -27, -2, 6, 26, -23, -12, 1, 

11, 5, 0, 7, -12, 9, -16, 4, 24, -3, -17, 4, 1, 2, -22, 15, 7, -4, -5, 10, 10, -4, 1, -2, 2, 2, 1, 2, 6, -4, 

0, -2, 3, 0, -6, 0/ 

 

DGRF60 (Definitive coefficients) 

 

data lg/ 

1,-30421,-1555, 1302, 957, -222, 46, 67, 15, 4, 1, 5791, -2169, 3002,-1992, 800, 362, 58, -56, 

6, 6, -3, -1967, 206, 1590, 1289, 504, 242, 1, 5, -4, 0, 4, -414, 224, -130, 878, -394, -26, -237, 

15, -11, -9, 0, 135, -278, 3, -255, 269, -156, -1, -32, 2, 1, -1, 16, 125, -117, -114, 81, -63, -2,   

-7, 10, 4, 4, -10, 99, 60, -20, -11, -17, -113, 17, -5, -1, 6, -55, -28, -6, 7, 23, -18, -17, 8, 10, -2, 

1, 11, -14, 7, -18, 4, 23, 1, -20, 8, 3, -1, -18, 12, 2, 0, -3, 9, 8, 0, 5, -1, 2, 4, 1, 0, 2, -5, 1, -1, 6, 

0, -7, 0/ 

 

DGRF55 (Definitive coefficients) 

 

data lg/ 

1,-30500,-1440, 1302, 958, -229, 47, 65, 11, 4, -3, 5820, -2215, 3003,-1944, 796, 360, 57,      

-56, 9, 9, -5, -1898, 291, 1581, 1288, 510, 230, 3, 2, -6, -4, -1, -462, 216, -83, 882, -397, -23,  

-247, 10, -14, -5, 2, 133, -274, -23, -230, 290, -152, -8, -32, 6, 2, -3, 15, 110, -98, -121, 78,     

-69, 7, -11, 10, 4, 7, -9, 96, 48, -16, -12, -24, -107, 9, -7, 1, 4, -50, -24, -4, 8, 28, -20, -18, 18, 

6, 2, -2, 10, -15, 5, -23, 3, 23, -4, -13, 9, 2, 6, -11, 12, 7, 6, -2, 10, 7, -6, 5, 5, -2, -4, 0, -8, -2,   

-4, 1, -3, 7, -1, -3, 0/ 

 

DGRF50 (Definitive coefficients) 

 

data lg/ 

1,-30554,-1341, 1297, 954, -240, 54, 65, 22, 3, -8, 5815, -2250, 2998,-1889, 792, 349, 57,      

-55, 15, -7, 4, -1810, 381, 1576, 1274, 528, 211, 4, 2, -4, -1, -1, -476, 206, -46, 896, -408, -20, 

-247, 1, -1, -25, 13, 136, -278, -37, -210, 303, -147, -16, -40, 11, 10, -4, 3, 103, -87, -122, 80, 

-76, 12, -7, 15, 5, 4, -1, 99, 33, -12, -12, -30, -105, 5, -13, -5, 12, -35, -17, 0, 10, 36, -18, -16, 

19, 5, -2, 3, 5, -22, 0, -21, -8, 17, -4, -17, -1, 3, 2, -24, 19, 12, 2, 2, 8, 8, -11, -7, 8, 10, 13, -2,    

-10, 2, -3, 6, -3, 6, 11, 8, 3/ 

 

DGRF45 (Definitive coefficients) 

 

data lg/ 

1,-30594,-1244, 1282, 944, -253, 59, 70, 13, 5, -3, 5810, -2285, 2990,-1834, 776, 346, 57,      

-40, 7, -21, 11, -1702, 477, 1578, 1255, 544, 194, 6, 0, -8, 1, 1, -499, 186, -11, 913, -421, -20, 

-246, 0, -5, -11, 2, 144, -276, -55, -178, 304, -142, -25, -29, 9, 3, -5, -12, 95, -67, -119, 82,      

-82, 21, -10, 7, 16, -1, 6, 100, 16, -9, -16, -39, -104, 15, -10, -3, 8, -45, -18, 2, 6, 28, -17, -22, 

29, 7, -4, -1, 12, -21, -12, -7, 2, 18, 3, -11, 2, -3, -3, -27, 17, 29, -9, 4, 9, 6, 1, 8, -4, 5, 5, 1, -20, 

-1, -6, 6, -4, -2, 0, -2, -2/ 
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5. EXTERNAL MAGNETIC FIELD MODELS 

5.1 INTRODUCTION 

Since the early sixties important efforts have been undertaken to model the external magnetic 

field, i.e., to describe the comet-like topology of the Magnetosphere. The first realistic model 

of the Magnetosphere was published by Mead (1964). This model which could be 

summarized as the sum of three terms, dipole + compression term + asymmetry term had a 

considerable success among the modelers of "the motion of the charged particles in the 

radiation belt". Ten years later was published the first model bases on magnetic field data, the 

Mead-Fairfield 1973 model. This model could not properly describe the depletion of the 

magnetic field in the ring current region nor the magnetic field in the tail region. New models 

were successively developed by Olson and Pfitzer (1974, 1977). The last version varying with 

the hour of the day and the season (tilt dependent) remained unpublished. Soon after those 

models arrived the series of the Tsyganenko models (1987, 1989 Ae and Kp). These three 

models were tilt dependent, showed a nice Neutral Sheet region, but suffered from a poor ring 

current description, dayside field line escape and nightside field line flaring. A remedy to 

these defects was offered by Tsyganenko with his 1996_V1 model which takes into account 

the interplanetary magnetic field as well as the Field Aligned Currents. Two years later we 

have developed a simpler model, with not all the features of Tsyganenko 96 but without the 

defects of the 1989 Tsyganenko models. In the scope of the present database we have retained 

only the following models: 

 

 The Mead 1964 model 

 The Mead-Fairfield 1973 model 

 The Tsyganenko 1987 model 

 The Tsyganenko 1989 Ae and Kp models 

 The Kosik 1998 Kp model 

 The Tsyganenko 1996_V1 model
[]

. 

5.2 THE MEAD MODEL 

The model developed by Mead in 1964 (Ref. 2) resulted from the determination of the 

Magnetopause magnetic field by a self consistent calculation (Beard, 1964): the dipole is 

perpendicular to the Solar Wind direction, the angle of the local tangent to the Magnetopause 

and the distance to the dipole fulfill the equation: 

 




8
cos2

22 Bnmvp   

 

                                                 
[]

 available at NSSDC. 
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where p is the pressure of the Solar Wind (n being the ion density, m their mass,  their 

speed).  is the angle between the normal to the surface and the velocity vector: 

 

Magnetopause

Ion velocity

vector



sn̂

 
 

Figure 1 

 

As a result the potential of the magnetic field was developed in a series of spherical 

harmonics. The development limited to the second order has been widely used: 
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In this expression r, ,  are the spherical coordinates,  being the colatitude counted from the 

north and  the longitude counted from the midnight meridian. The first term is the dipole 

magnetic field (g1
0
 = 0.31 gauss) the second term is an axisymmetric compression term ( 0

1g  = 

0.00025 gauss) and the third term is the noon-midnight asymmetry term ( 1

2g  = 0.000012 

gauss). If we introduce the subsolar distance rb we can write these coefficients as: 
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With the change of the subsolar distance the compression and asymmetry terms grow or 

diminish. This expression enabled the calculation of various magnetospheric effects like 

diffusion, drift echoes,..... 
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5.3 THE MEAD-FAIRFIELD MODEL 

Mead and Fairfield (Ref. 3) used magnetic field data from several spacecraft (Explorer series 

33, 34, 41, 43). The whole set of data extends over 4340 hours of measurements. More than 

4.10
7
 measurements where used to produce 12616 average values per 0.5 Re box. Data was 

binned into four classes (Kp = 0
-
,0 ,0

+
), quiet (Kp <2), perturbed (2< Kp < 3) and highly 

perturbed (Kp > 3). There was no data for latitudes lower than -50° and for geocentric 

distances less than -4Re. A least squares fit with Lagrange multipliers was used to get a series 

of coefficients. The magnetic field model is described as a series of polynomials and is tilt 

dependent. The tilt parameter T is expressed in units of tens of degrees and the coordinates X, 

Y, Z must be expressed in units of tens of earth radii: 

 

 
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The coefficients ai, bi, ci are calculated and the magnetic field fulfills the divergence free 

condition 
 
 . B 0  through a series of constraint equations: 
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The coefficients ai, bi, ci are given in Table I: 

 

Table I 

 

Coefficient Kp = 0, 0+ Kp < 2 Kp > 2 Kp > 3 

a1  17.93  21.79  33.16  39.48 

a2  -5.79  -7.03  -6.39  -2.91 

a3   2.98   3.02   4.30   5.17 

a4 - 2.57  -2.99  -3.25  -3.86 

a5  -0.30  -0.62  -0.44  -1.04 

a6  -1.47  -1.22  -1.27  -1.29 

a7   1.05    0.95   0.45  -1.14 

b1 -10.11 -11.84 -16.54 -19.10 

b2  -1.98  -2.57   -3.08   -3.50 

b3   0.09  -0.28    0.22    0.23 

c1  -9.41 -11.96 -19.88 -22.70 

c2  15.07  17.87  20.23  22.90 

c3  13.16  15.88  22.72  26.50 

c4   8.36   9.77  13.23  15.54 

c5   7.95   9.43  11.46  11.00 

c6   4.55   5.57    6.33   7.36 

c7   0.51   1.53    0.67   1.85 
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In absence of data measurements near the Earth this model poorly describes the ring current 

region. 

5.4 THE TSYGANENKO 87 MODEL 

The Tsyganenko 1987 model (Ref. 5) is based on a data set of 36682 points. The external 

magnetospheric sources taken into account are the ring current, the tail and the Magnetopause 

currents. 

The ring current model is developed in a cylindrical system aligned with the dipole axis: 
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The Magnetotail current distribution is based on a continuous series of filaments. Each 

filament contributes to the magnetic field: 
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This description avoids singularities. The initial tail field model of Tsyganenko (1982) model 

was described by these three equations: 
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where: 
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D = 2 Re,  = 10 Re, S = 20 Re, xN = -7 Re 

 

In the 1987 model, Tsyganenko has chosen a more complex expression.  

The return currents from the tail are simulated by two additional current sheets parallel to the 

central one and located at zgsm =  30 Re. Each of these two current sheets caries an eastward 

current with a density half of the main sheet current density. The mathematical representation 

of the tail current system is rather complex and we will not give the expressions here. For the 

Magnetopause or distant magnetic field the magnetic field components are expressed as 

follows: 
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As in the Mead-Fairfield model six additional relations follow from the requirement 
 
 . B 0 . 

The presence of exponentials enable a better representation of the tail region. The general data 

set has been divided into 6 subsets from Kp = 0 to Kp > 5. The corresponding coefficients are 

obtained by least square methods. The routine tsyg87 corresponds to this model. 
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5.5 THE TSYGANENKO 1989 MODEL 

The Tsyganenko 1989 model (Ref. 6) includes several improvements versus the 1987 model. 

The tail current sheet is warped and its thickness changes along the Sun-Earth and dawn-dusk 

directions. The geometry of the warped tail current sheet is shown in the figures below: 
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Figure 2 

 

Two versions of the model have been produced:  

 

 The version 1989 Kp for Kp indexes from 0 to 5 (routine ex89kp) 

 The version 1989 Ae for Ae indexes from 0 to 400 (routine ex89ae) 

5.6 THE KOSIK 98 MODEL 

This model has been developed using poloidal vector fields (Ref. 1). These poloidal vector 

fields can be expressed in various coordinate systems (cartesian, spherical, cylindrical,...). The 

poloidal vector fields are divergence free per construction. 
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In this model the magnetic field of the tail is the single non poloidal part of the model. The 

ring current region is described as a sum of two 0-tilt components and a tilt dependent term. 

For the 0-tilt components we have: 
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For the tilt component we have: 
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T is the tilt angle, the coefficients c10 = -1.5, c21 = 0.11, k1 = 0.04, k2 = 0.01, k2
T = 0.05 were 

chosen in order to reproduce the B contours. The coefficient c20 can be adjusted. The 

magnetic field of the distant regions of the Magnetosphere is developed in spherical 

harmonics: 
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coefficients anm given in Table II are not ichmidt normalized. The return currents are modeled 

as poloidal vector fields expressed in cylindrical harmonics: 
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where the angle  is counted from the ygsm axis. J0 and J2 are the Bessel functions. The 

coefficient b is given in Table II. 

The tail field model has been borrowed from the Tsyganenko and Usmanov 1982 model. We 

recall their equations: 
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where: 
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Typical values are D= 2 Re,  = 10 Re, xN = -7 Re, S, BN, BT are the parameters given in Table 

II. The model Kosik98 is tilt and Kp dependent for Kp values between 1 and 5. 

 

TABLE II 

 

iopt 1 2 3 4 5 

Kp 1-,1+ 2-,2,2+ 3-,3,3+ 4-,4,4+ 5-,5,5+ 

a10 10.98617 9.91009 12.37934 10.32178 3.03703 

a21 14.72302 16.17999 18.53984 62.21787 -0.61821 

a30 -3.35283 -4.20870 -4.67247 -63.52502 -0.31021 

a32 4.81772 5.52585 6.68590 74.90408 -2.19368 

a41 0.89381 0.98896 1.24239 41.8594 -0.74172 

a41 -1.71353 -2.40256 -2.91884 -127.25317 -0.56961 

a50 0.16678 0.22109 0.20900 27.08902 -0.03409 

a52 -0.09963 -0.18175 -0.28215 -41.93544 -0.12372 

a54 0.07181 0.07170 0.09359 8.13140 -0.07406 

rb 12. 12. 12. 36. 10. 

xN -7. -7. -7. -7. -7. 

BN 50 40 40 40 50 

Br 45. 30. 30. 30. 40. 

S 70. 70. 70. 70. 70. 

facrc 1.0 1.3 1.5 1.8 2.0 

c20 -0.4 -0.4 -0.2666 -0.2666 0.1333 

b 25. 30. 35. 50. 60. 

 

This model is more complex than the models Tsyganenko 87 or Tsyganenko 89 but it 

correctly describes the ring current region. There is no flaring of the field lines in the night 

side nor a field line escape in the dayside. The computing time is about five times longer with 

Kosik98 model than with these two models. It is however eight times faster than the new 

Tsyganenko 96_V1 model which is briefly presented below. The routine kk97kp corresponds 

to this model. 

5.7 THE TSYGANENKO 96_V1 MODEL 

This model is fairly complete (Ref. 7) and consists of: 
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 A ring current  

 A model of the warped tail 

 return currents on the Magnetopause 

 Field aligned currents 

 Interplanetary magnetic field 

 

The model is based on a least squares fit of the NSSDC data base. The Magnetopause fits the 

Magnetopause model of Sibeck for different Solar Wind pressures. To achieve these results 

the variational principle developed by Schulz and Mc Nab has been applied and the magnetic 

field escape through the Magnetopause is set to zero or near zero. The adjustable parameters 

are: 

 

Pdyn  between 0.5 and 10 Nanopascals 

Dst  between -100 and +20 

 

By and Bx components of the Interplanetary Magnetic field between -10 and + 10 Nanoteslas. 

This model is not a final version. More information on this model and futures updated 

versions can be obtained from the author at NSSDC. 
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6. CONJUGATE POINT CALCULATIONS 

6.1 INTRODUCTION 

The determination of conjugate points, points located on the same magnetic field line, implies 

the calculation of the field line, also called field line tracing. Four types of conjugate point 

calculations are encountered: 

 

 Conjugacy between a point in space and the Earth (north or southern hemisphere) 

 Conjugacy between the two hemispheres 

 Conjugacy between two points in space 

 Conjugacy between a point in space or a point on the Earth and the geomagnetic 

equatorial point. 

 

We describe two different algorithms for field line tracing with their respective advantages 

and drawbacks. Then we stress the difficulties that can be encountered in the tracing with the 

present magnetospheric models. 

6.2 DEFINITION OF THE CONJUGACY 

Strictly speaking conjugacy between two points is encountered when the two points are on the 

same magnetic field line. The strict application of this definition would result in a very limited 

amount of conjugate phenomena. In past mission analysis we preferred to define the 

conjugacy of two points as the presence of these two points in the same magnetic flux tube. 

The width of the flux tube being defined by its extent in invariant latitude and geomagnetic 

local time. 
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Conjugate Points

Flux Tube

 
 

Figure 1 
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6.3 THE CONJUGACY BETWEEN A POINT IN SPACE AND A 
POINT ON GROUND 

From a point in space the direction of field line tracing depends wether a northern or a 

southern conjugate point is seeked. For spacecraft located at positions S1 and S2 , the 

northern conjugate is obtained by a field line integration in the direction of the magnetic field 

vector B. On the other side, for a southern conjugate point, the integration is opposite to the 

direction of the magnetic field vector. The same considerations apply for the conjugacy 

between locations S1 and S2 depending on which starting point is chosen.  
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Field Line Integration along B
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Figure 2 

 

The calculation of conjugate points can be done using routines pconjr, dconjr, the last one 

being more precise, but requiring more computation time. 

6.4 EQUATORIAL CONJUGATE 

The equatorial conjugate of a ground station or a spacecraft is obtained by field line tracing 

and corresponds to the point for which the magnetic field B is minimum. As the field line 

tracing has a finite integration step we do not obtain the true equatorial point but the nearest 

point of the field line. In the case of an open field line this equatorial point is never obtained. 

Routine econjr calculates the equatorial conjugate. 

6.5 THE MERSON ALGORITHM 

The Merson algorithm, like the Fehlberg or Dormand Price algorithms belongs to the category 

of the imbedded Runge Kutta formulae. These algorithms have been discussed in great detail 

in Ref. 1 and 2. The idea is to construct Runge Kutta formulae which contain and expression 

1ŷ  of higher order than the usual approximation y1. This expression of 1ŷ  can be used for the 

evaluation of the error and for the step size control. The scheme of the coefficients is given as 

in table I 
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The usual Runge Kutta formula of order p is: 

 

y1 = yo + h (b1k1 +………………….+bsks)  

 

while  

 

 sso kbkbhyy ˆ................................ˆˆ
111   

 

is of order q (q = p - 1 or q = p + 1) 

 

The error estimate is: 

 

11
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The table of coefficients for the Merson algorithm is (Ref. 3): 

 

0      

1/3 1/3     

1/3 1/6 1/6    

1/2 1/8 0 3/8   

1 1/2 0 -3/2 2  

 1/2 0 -3/2 2  

 1/6 0 0 2/3 1/6 

 

The Merson algorithm is employed in routine dconjr. 

6.6 THE ADAMS METHOD 

The Adams Moulton method of order 4 is a predictor corrector method. The Adams 

interpolation formula is 
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The Adams extrapolation formula is: 

 

 '

3

'

2

'

1

'

1 9375955
24

  nnnnnn yyyy
h

yy  

 

Where h is the step of integration. This method is employed in routine pconjr 

6.7 FIELD LINE TRACING PROBLEMS 

In the early sistxies most of the field line tracing was performed using an internal magnetic 

field model like IGRF. As a consequence all the field lines were closed field lines. The 

development of more realistic quantitative magnetic field models of the Magnetosphere lead 

to a more complex topology: field lines are usually closed in the day side and in the night side 

for low geomagnetic latitudes. At high latitudes field lines are not closed and are very 

extended. Sometimes, due to the limitations of the models, field lines escape in the dayside of 

the Magnetosphere near the Cusp regions and wander in the Solar Wind region where no 

magnetic field model has been built.  Thus the calculation of the conjugate point in the other 

hemisphere is impossible as well the determination of the equatorial conjugate. It is necessary 

to set an upper limit to the number of points or to the radial distance to stop the field line 

tracing process. It is also necessary to verify that the field line remains inside the 

Magnetosphere using for example the Shabansky parabolic Magnetopause or the Sibeck 

model. For the same reason it is mandatory to verify that the spacecraft or the starting point is 

inside the Magnetosphere before starting a field line tracing. Just because the field line tracing 

is time consuming it might be tempting to simultaneously calculate the equatorial conjugate 

and then the electric field potential and also the length of the field line. Our experience is not 

in favor of such a method. The main reason is the lack of reliability of the software which 

must take care of all the impossibilities. If the spacecraft is in the southern hemisphere it is 

not always possible to obtain the northern conjugate and the equatorial conjugate (Figure 3).  

 

S4
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S1
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Figure 3 

 

If the spacecraft is in S4 no field line tracing is possible. If it is in S1 field line escape can 

occur for some models and usually for hight tilt angles. If the spacecraft is in location S2 the 
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northern conjugate can be calculated, thus the invariant latitude the Galperin L and the MLT. 

But it will not be possible to calculate the equatorial conjugate as well as the southern 

conjugate. However for location S3 all the calculations can be done. In some cases the 

Electric field potential cannot be calculated if the location S3 is too far from the Earth. The 

escape of the field line from the Magnetosphere during the field line tracing is tested using the 

routine mpause. 
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7. GEOPHYSICAL PARAMETERS 

7.1 INTRODUCTION 

In this chapter several important magnetospheric parameters are defined such as the 

geomagnetic local time, the McIlwain L parameter, The Galperin L parameter, the invariant 

latitude, the electric field potential of Mc Ilwain. We also define the corrected geomagnetic 

coordinates. We retain only the definitions of Hakura and Stasiewicz, the definition of 

Gustafsson involving rather complex calculatons. The definition of the corrected geomagnetic 

longitude paves the way to the definition of the corrected geomagnetic local time. This 

corrected geomagnetic local time can be compared to the «magnetic noon» introduced more 

than thirty years ago by Lebeau. 

7.2 THE GEOMAGNETIC LOCAL TIME 

The geomagnetic local time of a point is defined as: 
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
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

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 
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Where D is the geomagnetic longitude of the point and DO is the geomagnetic longitude of 

the Sun. 
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Figure 1 
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The solar magnetic coordinate system is defined as follows: the axis Zsm is along the dipole 

and the axis Xsm is such as the plane (Xsm, Zsm) contains the Sun direction. The Ysm axis 

forms a right handed triedron. The solar magnetic longitude of point P is counted from the 

(Xsm,Zsm) plane. Thus we have also: 

 

DODSM    

 

Another possible definition of MLT is thus: 
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Figure 2 

 

Two routines calculate the geomagnetic local time of a point knowing its geocentric colatitude 

and longitude (tgml) or using the solar magnetic coordinates (tgml2) 

7.3 THE MC ILWAIN L PARAMETER 

The motion of the charged particles in the radiation belt can be described by two invaraiants  

and I defined as: 

 

mB

E
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1  
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Called respectively the first and second invariants. In usual conditions (absence of an electric 

field and of magnetic field perturbations ) the energy E is constant. The first invariant reduces 

to Bm, the magnetic field intensity at the mirror point. B is the magnetic field intensity at the 

local point of the field line. The integral is along the field line (half bounce trajectory). 

Particles with a given Bm and I will drift around the Earth along the same shell. Particles with 

different Bm and I will drift along different shells. In the case of the Earth , for particles 

located on the same field line in the radiation belt, the effect is small. Mc Ilwain has found a 

function  
M

BIF
3

 which is almost constant along a line of force. For a given B and a given I 

it is possible to calculate a shell parameter L which characterizes together with Bm the charged 

particle population in the radiation Belt. The invariant I is calculated by the subroutine invar. 

For a dipole field the shell parameter L is simply defined by the equatorial point of the 

magnetic field line: it is equal to the geoecentric distance of the equatorial point expressed in 

earth radii. 

7.4 THE GALPERIN L PARAMETER 

For the radiation belt region Mc Ilwain derived the L parameter as a function of the second 

invariant I and as a function of the local magnetic field. In the outer regions the magnetic field 

is highly distorted and Y.Galperin suggested the following recipee for a new L parameter: 

 

 Trace the field line from the point down to the Earth with the complete internal+ external 

magnetic field. 

 From the conjugate point (110km altitude), calculate the usual Mc Ilwain L parameter. 

 

One should notice that for the second part of the calculation we still use the magnetic field 

coefficients and the internal magnetic field model of the sixties. 
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Figure 3 

 

The Galperin L parameter is calculated by the routines dlgalp and flgalp. 
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In 2007, Kosik (Ref.6) has described the quantitative aspects of the Galperin L parameter. In 

some sense, the Galperin L parameter can be considered as a geomagnetically corrected 

McIlwain L parameter. 

 

7.5 THE INVARIANT LATITUDE 

The invariant latitude is defined as  o  : 

 

L
o

1
cos2   

 

Where L is the Galperin L parameter defined in the previous paragraph. The parameter is 

calculated in invlat. 

7.6 THE ELECTRIC POTENTIAL 

In the equatorial plane, Mc Ilwain (Ref.8) defines a magnetic field model labelled M2 given 

by the equation: 
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Where  is the local time and R the radial distance in earth radii, B is expressed in nanoteslas. 

The electric potential in a non rotating reference frame is given by the equation: 
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where the coefficients Aij, ai, bi, bj, j are given in Table I. We also have 
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Bi and di in Table II are in nanoteslas and j, Cj are in hours. 
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TABLE I 

 

j A1j A2j A3j A4j A5j A6j j Cj 

1  2.8  5.4  0.6  2.9 -1.2  0.6 4 2 

2  6.0 -1.7  1.7 -1.1 0.9 -0.2 6 2 

3 -6.5  3.2 -1.2  1.9 -1.1  0.4 6 2 

4  5.7 -2.5  1.1 -0.9  0.5 -0.2 10 2 

5 -1.4  1.6 -2.2  1.3 -1.2 -0.1 12 2 

6  4.5 -3.3  1.0 -2.1  0.5 -0.7 14 2 

7 -5.3  0.7 -3.2  0.6 -1.5 -0.1 16 2 

8  3.6 -3.8  0. -1.5 -0.2 -0.7 18 2 

9 -3.1 -2.0 -2.5 -0.6 -1.3 -0.4 20 2 

10  1.7 -1.5  0.2 -0.9 -0.3 -0.2 21 1 

11  1.0 -1.5 -1.1 -0.4 -0.6 -0.2 22 1 

12  1.7 -0.5 -0.5 -0.6  0.3 -0.2 22.5 0.5 

13  2.9 -2.1  1.7 -1.2  0.4 -0.2 23 0.5 

14 -0.1  3.6 -4.9  3.5 -2.2  0.7 23.5 0.5 

15  2.7 -3.4  5.5 -0.6  0.6 -0.5 0. 0.5 

16  0.7  5.7  2.1  0.6  0.1 -0.2 0.5 0.5 

17  6.0  2.3  2.3  0.3  0.1 -0.1 1 0.5 

18  3.5  0.3  2.6 -0.8  0.7 -0.4 1.5 0.5 

19  9.5  5.1  2.8  1.7 -0.7  0.3 2 1 

20  3.0 -1.9  2.1 -1.3  0.9 -0.4 3 1 

 

 

TABLE II 

 

i 1 2 3 4 5 6 

Bi 0 40 100 180 280 400 

di 30 50 70 90 110² 130 

 

The Mc Ilwain electric potential is calculated in mcilwe. 

7.7 THE CORRECTED GEOMAGNETIC COORDINATES 

Hultquist (1958a) calculated the spherical harmonic coefficients of the Earth’s magnetic field 

in a centered dipole coordinate system. In a later work (Hultquist, 1958b) he calculated the 

deviations of the real field line from the dipole field line due to the perturbations cause by the 

higher spherical harmonic coefficients. The "integrated deviations" along a dipole field line 

give displacement vectors in the northern and southern hemispheres. The corrected 

geomagnetic coordinates of a point are the dipole geomagnetic coordinates corrected from the 

displacement vector. Hakura (1965) proposed a new method for the calculation of the 

corrected geomagnetic coordinates: 
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7.8 HAKURA SOLUTION FOR CORRECTED GEOMAGNETIC 
COORDINATES 

From a point Q on the Earth’s surface a field line is traced down to the dipole geomagnetic 

equator with the complete geomagnetic Earth potential and crosses this equator at point A. 

From point A a dipole field line is traced down to the Earth (point Qc). This point Qc has the 

geomagnetic coordinates (c, c) where c is the corrected dipole colatitude and c is the 

corrected dipole longitude. c is calculated using the geocentric distance of point A: 

e

c
r

1
sin2   

where re is expressed in earth radii. The corrected dipole longitude c can be calculated from 

the coordinates of point Qc in the dipole coordinate system. 

 

 
 

Figure 4 

 

The displacement vectors calculated by Hultquist (1958b) correspond to the projections of the 

vector QcQ along the meridian and perpendicular to the meridian through point Q. 
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Figure 5 



 

  91  

7.9 GUSTAFSSON SOLUTION FOR CORRECTED GEOMAGNETIC 
COORDINATES 

Gustafsson introduces the CBM system. 

 

The CBM system is obtained with the Bmin point on a field line. The distance RB to the Bmin 

point of a field line is obtained using the relation: 

 

3
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The equatorial field intensity is calculated with the first three harmonics. The latitudes are 

defined by the relation  

  2
1

cos


 BR  

 

The CBM system introduces the total field in a second step. Field lines are traced to the total 

field geomagnetic equator and the minimum B locations are marked with their geographic 

coordinates. An origin meridian is chosen. The advantage of this corrected geomagnetic 

system lies in the Bmin concept which corresponds to the motion of charged particles which 

drift in the equatorial surface. 

7.10 STASIEWICZ SOLUTION FOR CORRECTED GEOMAGNETIC 
COORDINATES 

Hakura obtained corrected geomagnetic coordinates using the magnetic field of the Earth. 

Stasiewicz (Ref. 12) extended his results using internal and external magnetic fields. The 

recipe is the following: 

 

 From a point P in space a field line is traced down to the Earth using the total magnetic 

field (IGRF + Tsyganenko 87 or 89 ) 

 A point Q on Earth is obtained. At this stage the method of Hakura is used. From this 

point a field line is traced down to the geomagnetic equator using the internal magnetic 

field only (IGRF). A point A is obtained on the geomagnetic equator.  

 From the point A a dipole field line is traced back to the Earth. Point Qc gives the 

corrected geomagnetic coordinates. 
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Figure 6 

 

The corrected geomagnetic coordinates are calculated in corgm. 

7.11 THE CORRECTED GEOMAGNETIC LOCAL TIME 

In 1965 Lebeau (Ref. 7) defined the "True Magnetic Noon" as follows: 

 

 For a given epoch A and a given universal time T it is possible to calculate the 

geographic location of the subsolar point: 

 

A

T

S

S





2sin

)12(15




 

 

The first equation indicates that the subsolar point is at longitude 0 at Noon. The second 

equation indicates that the latitude of the subsolar point depends on the season and is null for 

the equinoxes. 

It is also possible to calculate the geomagnetic location (in the dipole coordinate system) of 

the subsolar point. The geomagnetic longitude S of the subsolar point can be calculated for 

time T at epoch A. 

For all the field lines of geomagnetic longitude S it is "Magnetic Noon" at time T for epoch 

A. It is true in particular for all the points of a real field line which starts at a great distance 

from the Earth (>6Re) Lebeau traces the dipole field lines of colatitudes 1, 2, 3, 5, 7, 10. They 

cut a sphere of 10 Re radius. From these intersections he traces the real field line back to the 

Earth down to 100km. altitude. This calculation is performed for 24 values of T. He obtains 

"Iso-Magnetic-Noon" curves, which converge towards the "Invariant Pole". There are two 

"Invariant Poles", one for the northern hemisphere and the other one for the southern 

hemisphere. 
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Figure 7 

 

This early definition of the geomagnetic time for the description of auroral phenomenon can 

be put in perspective with the following definition of the corrected geomagnetic local time by 

Stasiewicz. 

 

The usual geomagnetic local time of a point is defined as: 
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Where d is the geomagnetic longitude of the point and do is the geomagnetic longitude of 

the Sun. 

The corrected geomagnetic local time MLTc will be defined as: 
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where dc is the corrected geomagnetic longitude of the point.  

In the Hakura approximation, this corrected geomagnetic local time corresponds to the 

definition by Lebeau of the "Magnetic Noon". 

7.12 APPLICATIONS OF THE GALPERIN L PARAMETER  

In the outer magnetosphere directionnal fluxes are adequately described by the Galperin L 

parameter as is shown in the following figure: a bunch of particles (arrow) measured on the 

equator will have a dipole L parameter of 5.2,. As this bunch of particles bounces along the 

real field line the dipole L value will change to 6  and mirror for L = 7. The use of the L 

dipole for labelling directionnal fluxes induces a continuum of L values between 5.2 and 7. If 

one uses the Galperin  L parameter we have a unique label for the directionnal flux along the 

distorted field line : the Galperin L parameter is obtained by tracing the real field line to the 

Earth, than trace back to the equator. Here the Galperin L value equals 7 and remains constant 

for this bunch of particles along its bounce motion.   
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Figure 8 

 

 

The Galperin L parameter has been successfully used by McIlwain and Kerr (Ref. 10) for the 

association of Cluster data with auroral displays. As mentionned by these authors another 

advantage of the Galperin L parameter is the possible labelling of open field lines as one 

traces the total magnetic field line down to the Earth and then one calculates the McIlwain L 

value with the internal field only. 

There is also a link between the Galperin L parameter and mathematical models of the 

magnetosphere. As an example we consider the very simple Mead (1964) magnetic field 

model of the magnetosphere where we retain only the first three harmonics (Kosik, Ref. 5) : 



V 
1

r2
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0 cos  r g 1
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3

2
r2 g 2
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In this expression r, ,  are the spherical coordinates, r is the radial distance expressed in 

Earth radii,   is the colatitude counted from the north and  the longitude counted from the 

noon meridian. The first term is the dipole magnetic field (g1
0
 = - 0.31 gauss) the second term 

is an axisymmetric compression term ( 0

1g  = - 0.00025 gauss) and the third term is the noon-

midnight asymmetry term ( 1

2g  =- 0.000012 gauss). It was possible to calculate the equations 

of the field lines using the perturbation theory  (Kosik, Ref. 5): 
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

  0 
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1

g1
0

L4 sin7 sin0  

 

In the following picture we have traced a field line of the model and its associated dipole field 

line which has the same L value: 

 

 
Figure 9 

 

A bunch of particles will follow the model field line and the directionnal flux and according 

to the Galperin definition will have the label L of its associated dipole field line. From the 

field line equations above we notice that the Galperin L parameter is indeed the L parameter 

in the above equations. There is a one to one correspondence between the Galperin L and the 

mathematical description of the model. As a consequence all the mathematical results for the 

description of the particle motion or the fluxes can also be viewed in terms of the galperin L 

parameter. For example the drift shell equation appears as a relation between Galperin L 

parameters of different longitudes: 

 



L  L0 1
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1

g1
0
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where 



L  is the Galperin L parameter at longitude 



  and 



L0 is the Galperin L  parameter at  

longitude 



0 . In this equation  



p m  is a function of the miror point colatitude 



m  of the 

particle.  

These examples show the possibilities offered by the Galperin L parameter for the labelling of 

fluxes and the modelling of charged particles motion. 
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8. ASTRONOMY AND CELESTIAL MECHANICS 

8.1 INTRODUCTION 

Mission Analysis and Space Science data treatment require orbital calculations as well as 

various astronomical informations such as the Inertial and Greenwich frames of reference, the 

Sun position and motion, sideral time,.... Due to the attraction of the Sun, the Moon and the 

planets the inertial frame of reference is not exactly inertial, the Ecliptic changes slowly as 

well as the Celestial Pole. In the present chapter a short review of all this material is made. 

For further details a small bibliography is given at the end of this chapter. 

8.2 FRAME OF REFERENCES 

The Azimuth-elevation coordinate system: 

 

In this system the observer is at the origin of the coordinate system. The fundamental plane is 

the local horizon and the Z axis is the normal to the free surface of a liquid. In this coordinate 

system a direction is defined by two angles: 

 

 The azimuth, A, counted positive from the local north in the clockwise sense. 

 The elevation, h, counted positive towards the Zenith from the local horizon and negative 

towards the Nadir. 

 

z

North South

A h

Obs.

 
 

Figure 1 
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The hour angle - declination coordinate system: 

 

This coordinate system is linked to the center of the geoid and is defined in the following 

way: 

 

 The Astronomical Meridian is a vertical plane which contains the axis joining the two 

Celestial Poles. The elevation of the North Pole is also the astronomical or geographic 

latitude of the point. The Celestial Equator has its center at the geocenter and is 

perpendicular to the axis joining the two Celestial Poles. The Astronomical Meridian 

contains the local normal at the observer’s location. A point on this Celestial Sphere is 

defined by two angles: 

 The hour angle, H, counted positive westwards from the local Astronomical Meridian. 

 The declination, , counted positive towards the North Pole and negative towards the 

South Pole. 
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Figure 2 

 

The right ascension - declination coordinate system: 

 

This coordinate system has its center at the center of the geoid. The Equator is the Celestial 

Equator defined in the previous paragraph. The position of an object is defined by the 

declination defined in the previous paragraph. The other coordinate is the right ascension, , 

counted positive eastwards from the Vernal Point . There is a relationship between the 

sideral time T, The hour angle H, and the right ascension  of any celestial object: 

 

H = T -  
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When the celestial object is the Vernal Point ,  = 0. The sideral time is also the hour angle 

of . 
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Figure 3 

 

The right ascension with respect to the CNES Vernal Point 1950

 is calculated in routine 

tsidrg. The right ascension with respect to the Mean Vernal Point

 is calculated in routines 

soltervo, solterv, solter00, solter05, solter10 and solter15. These last routines differ only in 

the calculation of thetdip, phidip, which describe the tilt of the dipole from 1945 to 2015. The 

transformation of the coordinates and velocity components of a spacecraft from the inertial 

coordinate system to the geocentric coordinate system is performed in pvig.  

 

The Sun Position and Motion: 

 

In the Celestial system the Sun moves along the Ecliptic. The inclination of the Ecliptic 

versus the Equator is called Obliquity . 
 

                                                 

 See paragraph 8.3 for details 
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Figure 4 

 

The Ecliptic and the Equator cross each other at the Vernal Point , ascending node of the 

Ecliptic. The position of the Sun along the Ecliptic is defined by its longitude Lo counted 

from the Vernal Point. It is possible to calculate the right ascension and declination of the Sun 

by solving the spherical triangle: 

 

oo Lsinsinsin    

oo  tancotsin   

ooo L  cos/coscos   

 

The calculation of the Ecliptic longitude as well as the right ascension and the declination of 

the Sun are given by Russel (Ref. 1). The right ascension and the declination of the sun are 

calculated in routine sun. The obliquity is also calculated in routine sun. These results can 

also be found in routines solter15, solter10, solter05, solter00, solterv, soltervo.  

8.3 FRAME OF REFERENCES REVISITED (IT WAS TOO SIMPLE!) 

As mentioned above the origin of the right ascensions is the Vernal Point and this Vernal 

Point is defined as the intersection of the Celestial Equator and of the Ecliptic. Unfortunately, 

the Earth is submitted in its motion around the Sun to the gravitational influences of the Sun 

and the Moon as well as the other planets. The Sun and the Moon act on this ellipsoidal 

shaped body and the resulting attraction creates a torque: the Pole of the Earth is subject to the 

Precession and Nutation. On a very small scale the Pole of the Earth has an erratic motion due 

to the tides. All these perturbations change the location of the Pole, thus the location of the 

Vernal Point. It is therefore necessary to define very clearly these different effects. 
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Motion of the Pole of the Earth: 

 

The true Earth’s frame of reference OXYZ is defined in the following way: 

 

Origin O at the barycenter of the Earth 

Z axis in the direction of the true Pole Pv (axis of the instantaneous rotation of the Earth) 

X axis in the true equator plane, the plane XZ contains the origin of the longitudes Go 

(convention) 
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Figure 5 

 

The location of Pv changes with time and its location is defined by its coordinates in an 

arbitrarily fixed frame called CIO-BIH. 

 

The Motion of the Ecliptic: 

 

The Ecliptic is defined as the intersection of the Celestial Sphere with the orbital plane of the 

Earth around the Sun. 

The Ecliptic plane has a secular motion and at a given time the Ecliptic plane E(t) is defined 

with respect to the reference Ecliptic E(o) through some angle d. 
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Figure 6 

 

Precession and Nutation of the Earth: 

 

The motion of the Earth around its barycenter is subject to the perturbations caused by the 

Moon and the Sun. These perturbations have two effects: 

 

 A secular motion called Precession (26000 years period) 

 A short periodic oscillation called Nutation (18.6 years period) 

 

True Celestial Pole

Pv

PmMean Celestial Pole

Q
Pole of Ecliptic

Nutation Ellipse

True Celestial Pole

Pv

Pm
Mean Celestial Pole

 
 

Figure 7 
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The Mean Pole motion is subject to Precession only: It is possible to define a Mean Celestial 

frame of reference with axis Z through the Mean Pole Pm and X axis at the intersection of the 

Mean Equator and the Ecliptic. Star catalogue information is given in the Mean Celestial 

frame of reference. The intersection of the Mean Equator with the Ecliptic defines on the 

Celestial Sphere the Mean Vernal Point. 

 

The true Pole Pv of the Earth results from the Precession and the Nutation effects. The true 

Celestial frame of reference has axis Z through the true Pole Pv and the axis X is the 

intersection of the true Equator and the Ecliptic. The intersection of the true Equator and the 

Ecliptic defines on the Celestial Sphere the true Vernal Point. 

 

CNES introduces a Modified Vernal Point which is the projection of the Mean Vernal Point 

1950 on the true Equator of date. 

 

For the Cluster project, the orbital information is given in a mean equatorial system of Epoch 

2000,0. For Epoch 2000,0 the Vernal Point 2000,0 is at a given location intersection of Mean 

Equator for 2000,0 and Ecliptic for 2000,0. For another Epoch, 2001,0 for example, it is 

necessary to calculate the location of the Vernal Point 2001,0 and we take into account the 

Precession between these two epochs.  

For Interball we transform the orbital elements calculated by the Russian Space Agency and 

given in a mean equatorial system 2000 into the CNES true Equator system. In this 

transformation we take into account the Precession and the Nutation effects. The introduction 

to the Precession and Nutation calculations involves the knowledge of the Astronomical Time 

References. 

8.4 THE ASTRONOMICAL TIME REFERENCES 

The Julian Date: 

 

The Julian date defines a decimal date counted since the 1st January 4713 B.C. Julian Days 

start at 12 h U.T.  

The Julian Day 0,1900 corresponds to the 31st of December 1899 at 12h U.T. Its Julian Date 

is 2415020.0 and Julian Day January 0,1950 corresponds to Julian Date 2433282 (31st of 

December 1949, 12 U.T.) 

 

The Modified Julian Date: 

 

The origin is November the 17th 1858 at 0h U.T. The relationship between the Modified 

Julian Date and The Julian Date is 

 

MJD = JD - 2400000.5 

 

For January 1st 1950 at 0h U.T. the modified Julian date is  

 

MJD1950 = 2433282.5 - 2400000.5 

MJD1950 = 33282.0 
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The CNES Julian Date: 

 

The CNES Julian Date JUL is counted from January 1st 1950 at 0h UT 

For January 1st 1950 0h UT JUL = 0. 

For any other date we have 

 

JUL = MJD - MJD1950 = JD - 2433282.5 

 

For January 1st 2000, 0h U.T., JUL = 18262 

The CNES julian Date is calculated in routine julg. It is always necessary to add the fraction 

of time between the hour, min, sec of the date and 0h0min0sec. For example the julian date 

for  

January, 2, 1990 is: 14611., the Julian date for January 2, 1990 at 18h15min 6sec is simply 

 

14611 + (18x3600 + 15 x 60 + 6) /86400. = 14611.760486 

 

Routine calendg transforms an integer Julian date into a Gregorian date (year, month, day). 

djgreg transforms a Julian date and its fraction into a Gregorian date (year, month, day, hour, 

minutes, seconds). A useful routine datjhms transforms an interval in seconds into days, 

hours, minutes, seconds. 

 

Epoch J2000: 

 

Epoch J2000 is defined as January 1st, 2000 at 12h U.T. 

 

J2000 corresponds to Julian date JD = 2451545.0  

 

The Modified Julian Date 2000 of ESOC: 

 

For the Cluster Project, ESOC introduces the Modified Julian Date 2000, MJD2000. It is 

chosen to be zero for January 1st, 2000, at 0h U.T. For dates prior than January 1st 2000 this 

Modified Julian Date is negative. 

 

MJD2000 = MJD1950 - 18262 = JD - 2451544.5 

 

Routine jd2000 transforms a gregorian date into the ESOC julian date with respect to the 

reference epoch 2000. 

8.5 THE CALCULATION OF THE PRECESSION AND THE 
NUTATION 

The precession matrix: 

 

The precession matrix converts a vector in the mean geocentric equatorial system of 2000.0 to 

the mean geocentric equatorial system of date. (The Mean Pole Pm moves from Pm(2000) to 

Pm(t)). 
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This precession matrix is the products of three elementary rotations: 

 

 1rst rotation around axis Z0 by an amount -a gives new axes X1,Y1,Z1 

 2nd rotation around axis Y1 by an amount a gives axes X2,Y2,Z2 

 3rd rotation around axis Z2 by an amount -za gives axes X3,Y3,Z3 

 

The product of the three matrices gives the final matrix: 

 



















333231

232221

131211

PPP

PPP

PPP

P  

 

with: 

 

AAAAA ZZP  sinsincoscoscos11   

AAAAA ZZP  cossinsincoscos12   

AAZP sincos13   

AAAAA ZZP  sincoscoscossin21   

AAAAA ZZP  coscossincossin22   

AAZP sinsin23   

AAP  cossin31   

AAP  sinsin32   

AP cos33   

 

The angles A, A, ZA are defined as: 

 
32 017998".030188".02181".2306 TTTA   
32 041833".042665".03109".2004 TTTA   
32 018203".009468".12181".2306 TTTZA   

 

Where the angles have to be converted in radians. T is the time interval expressed in Julian 

Centuries since epoch J2000. 

 

If JD is the Julian date, the time interval in centuries is: 

 

.36525

.2451545


JD
T  

 

Using the Modified Julian Date MJD2000 of ESOC  is also expressed as: 

 

36525

5.02000 


MJD
T  

 

Since there is a difference of 0.5 days between Epoch 2000 and MJD2000. 
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The precession matrix which transforms a vector in the inertial coordinate system J2000 into a 

vector in an inertial coordinate system of another Epoch is calculated in routine pr2000. 

 

The Nutation: 

 

The transformation of the coordinates of a point given in the Mean Equator of date, to the 

coordinates in the true Equator of date involves three rotations. A rotation 1 from the Mean 

Equator to the Mean Ecliptic of date, a rotation from the Mean Vernal Point to the true Vernal 

Point m =  and a rotation from the Mean Ecliptic to the true Equator . 
 

v




True equator of date

m

1 Mean equator of date

Mean ecliptic of date

 
 

Figure 8 

 

It is possible to choose between the theory of Newcomb or the theory of Lieske. 

The nutation has rather small effects with a period of 18.6 years. The true Pole describes an 

ellipse around the Mean Pole and at the same time the Mean Pole drifts due to the precession. 

As a consequence the true Pole describes a winding curve around the Ecliptic Pole. The true 

Vernal Point moves around the Mean Vernal Point and the true Celestial Equator oscillates 

around the Mean Celestial Equator. The motion of the true Vernal Point (Nutation in 

Longitude  ) is given by: 

 

 sin23".17Nvm  

 

The inclination of the true Equator with respect to the Mean Equator changes with time 

(Nutation in obliquity): 

 

  cos21".9 mv  

  

Where )0,1900("69629'8259  t  

time t is expressed in tropical years. The tropical year is the interval of time which 

corresponds to a change of 360° of the mean longitude of the Sun. 

m and  are the mean and true obliquities. 
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Transformation of a vector from the Mean reference frame J2000 to the Mean reference frame 

of another Epoch or to the true reference frame of another Epoch: 

 

The Mean reference frame J2000 is defined as OXYZ2000with axis OZ2000 through the Pole 

Pm2000 and axis OX2000 through the Vernal Point m2000. This Vernal Point is defined as the 

intersection of the Ecliptic2000 and the Mean equator 2000. For another Epoch t the axis OZt 

crosses Pole Pmt and axis OXt is the intersection of the Ecliptic and the Mean Equator at 

Epoch t. The transformation between these two reference frames is the Precession Matrix 

from Epoch 2000 to Epoch t. 

If we want to transform from the Mean reference frame at Epoch 2000 to the true reference 

frame at Epoch t, we first perform the transformation from the Mean reference frame at Epoch 

2000 to the Mean reference frame at Epoch t, then we apply the Nutation transformation from 

Mean reference frame at Epoch t to the true reference frame at Epoch t. For Cluster the 

second transformation is neglected. 

8.6 THE DIFFERENT SIDERAL TIMES 

It is possible to define the true sideral time  which corresponds to the true Vernal Point and 

the Mean sideral time m which corresponds to the Mean Vernal Point. The difference 

between the two sideral times corresponds to the angular separation between the two Vernal 

Points caused by the Nutation and projected into the equatorial plane: 

 

cosNTT vm   

 

The formula for the mean sideral time is: 

 

m,0 = 99°.6909833 + 36000°.7689 C + 0°.0001525 (1) 

 

where  

36525

0.2415020


JD
C  

 

C are the Julian centuries. Each Julian century has 36525 Julian days. 

 

2415020.0 corresponds to December 31st 1899. 

Formula (1) corresponds to the mean sideral time of Greenwich at 0h UT. At any other time 

of the day t, the Greenwich sideral time is: 

 

tTT mm  0,  

 

where t is the Universal Time UT and   is the angular velocity of the Earth expressed in 

degrees per solar minute. 

 

mn/25068447.0   
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The mean sideral time defined by Russell (Ref. 1) is the same but expressed differently: 

 

m = 99°.690983 + 0.9856473354 x DJ + 360° x FDAY 

 

Where FDAY = Number of seconds in the day divided by 86400  

And DJ = 365 x (IYEAR - 1900) + (IYEAR - 1901) / 4 + IDAY - FDAY - 0.5 

 

Where IYEAR is the year number 

 IDAY is the day number in the year 

 

This formula is valid between 1901 and 2099. This formula is calculated in routines sun, 

solter15, solter10, solter05, solter00, solterv, soltervo. 
 

CNES defines the sideral time with respect to the CNES Vernal Point and uses the CNES 

Julian Date: 

 

mcnes =  100°.075542 + 360°.985647348 x JUL + 0°.2900 x 10 12  x JUL
2
 

 

Where JUL is the CNES Julian Date counted from 1st January 1950, 0h U.T. The CNES 

sideral time is calculated in routine tsidrg. The CNES Julian date is calculated in routine julg.  

8.7 COORDINATE TRANSFORMATIONS FOR AN OBLATE EARTH 

Transformation from geodetic coordinates to geocentric coordinates: 

 

z

b

P










x

r
h

p


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Figure 9 
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From the above figure we can calculate the geocentric coordinates. If a and b are the semi-

major and semi-minor axes of the Earth’s ellipsoid, the equation for the ellipsis is: 

 

1
2

2

2

2


b

z

a

x
 

 

From the gradient we derive the components of the normal to the ellipsoid surface: 

 

k
Nb

z
i

Na

x ˆ2ˆ2
22




 

 

Where 


N  

 

We also have 2

2

tan
b

a

x

z

x

z





  

 

as z =  sin , x =  cos   tantan
2

2

b

a
  

 

Expressing sin  as a function of tan   we obtain 

2

1

2

4

4
2 cossin

sin
sin


















b

a

 

we also have: 2
 = a

2
 cos

2
  + b

2
 sin

2
  

 

but b
2
 = a

2
 (1-e

2
) 

 

We get : 

 

 22 sin1 ea   

 

The rectangular coordinates of the point P are: 

 

x =  cos  + h cos  

x =  sin  + h sin  

 

It is easy to obtain the radial distance r and the geocentric colatitude  of the point P. 

The transformation from geodetic coordinates into geocentric coordinates is performed in 

routine gdvgc. 
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Transformation from geocentric coordinates to geodetic coordinates: 

 

This transformation formula has been developed by J. Morrison and S. Pines (Ref. 2). 

 

r cos  = (h + c) cos  

r sin  = (h + s) sin  

 

where  2
1

22 sin1 ec   and s = (1 - e
2
) c 

 

The couple of equations can be solved: 

 

  2/122

2

sin1

sin

cos
tantan








e

e


  

 

The solution of this equation is obtained by the Lagrange expansion formula. The geodetic 

latitude is given by: 

 

 =  + a2 (e, ) sin 2 + a4 (e, ) sin 4 + a6 (e, ) sin 6 + a8 (e, ) sin 8 

 

     86

3

86

2

8642

2 34
256

3

32

1
3560128512

1024

1
eeeeeeeea 


 

   
4

8

3

8
864

2

864

4
16256

15
24

16

1
354864

1024

1



ee
eeeeeea   

     86

3

86

2

86

6 34
768

35

32

3
54

1024

3
eeeeeea 


 











432

8

8

320252645

2048 

e
a  

 

where e
2
 = 2 - 2

 

and  is the flattening of the Earth. The transformation from geocentric coordinates into 

geodetic coordinates is performed in routine gcvgd. 

8.8 A SIMPLIFIED APPROACH TO THE DEFINITION OF THE 
SIDERAL TIME 

In this paragraph we give a simplified formula for the definition of the sideral time which can 

be useful for a first approach in mission analysis. 

According to A. Danjon (Ref. 3) the sideral time is the hour angle of the Vernal Point . We 

don’t know a priori where is located . However we know where is located the Sun with 

respect to Greenwich through the Universal Time UT and we also know the location of the 

Sun for some well defined epochs of the year. 
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At 12h UT the Sun is in the Greenwich Meridian and the 21st of March the Sun is at the 

Vernal Meridian . As the hour angle is counted from Greenwich, the 21st of March at 12h 

U.T. the Greenwich sideral time equals the hour angle and is 0.: 

 

Situation 21st of March

12h UT

G

Ecliptic

Equator

Sun
g

 
 

Figure 10 

 

If J is the day of the year, the 21st of March corresponds to J = 80; Thus for 12h UT we have: 

 

sideral time at 12h UT = -80 + J 

 

For the 21st of June, the 21st of September and the 21st of December at 12h U.T. the Sun and 

the Greenwich Meridian are located at points 1,2,3: 

Using the previous formula the sideral time is respectively 90°, 180°, 270° for points 1, 2, 3 

for 12h U.T. 

For a Universal Time different from 12h U.T., the Greenwich Meridian has rotated eastwards 

and the angle of rotation  is simply: 

 

 = (UT – 12) x 15° 

 

2 21st September

180°

1

21st June

90°

21st March



3

21st October

270°

 
 

Figure 11 
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We thus have the general formula: 

 

Greenwich sideral time at UT = sideral time at 12h UT + (UT-12) x 15° 

 

Taking into account the definition of the sideral time at 12h U.T. we get: 

 

Greenwich sideral time day J at UT = 100° + J + UT x 15° 

 

With this formula, it is therefore possible to locate the Greenwich Meridian with respect to the 

Vernal Point, knowing the day of the year and the UT. 

For the 1st of March at 10h U.T., we have J = 60, UT = 10. We get 

 

Greenwich sideral time = 100° + 60° + 150° = 310° 

 

The above result is approximate as well as the above formula but it helps finding the 

astronomical situation and locate Greenwich with respect to the Vernal Point. 

8.9 CELESTIAL MECHANICS 

Orbital calculations: 

 

Orbital calculations of highly eccentric orbits require precise integration methods such as the 

Runge Kutta methods developed by Fehlberg or Dormand-Price. In these methods an upper 

limit of the error is imposed and the iteration process continues until the limit is reached. This 

iteration process is done for each integration step. As a consequence the orbit extrapolation is 

time consuming. Moreover the computer code must be provided to all users and increases the 

risk of unproper use. ESOC has developed an elegant method for orbital calculations which 

does not require much computer code for non expert users. This method is not time 

consuming and can be summarized as follows: 

 

 The orbit determination and calculation is initially made in ESOC with all the necessary 

tools and methods in order to achieve the best precision. 

 Each orbit is divided in a finite number of intervals. 

 For each interval the average keplerian elements are calculated. 

 A fit of the precise orbit is made using the keplerian orbit and Tchebycheff polynomials. 

 

As a consequence the final user needs to have only the final keplerian elements for each 

interval and the associated Tchebycheff polynomials. The reconstruction is made by one 

routine called orbit. This routine reads a file provided by ESOC the keplerian elements and 

the Tchebycheff polynomials and reconstructs for a given time the exact position and velocity 

of the spacecraft.  

ESOC provides the orbital information in an inertial frame of reference Epoch 2000. For 

Epoch 2000 the Vernal Point is defined as the intersection of the Mean Equator and the 

Ecliptic for this Epoch. As mentioned in the previous paragraphs it is necessary to take into 

account the precession between Epoch 2000 and the current Epoch. The precession matrix 

provided by ESOC, routine pr2000, transforms a position-velocity state vector for Epoch 

2000 in a position-velocity state vector for the current Epoch. The routine posin calculates at 

a given time the position-velocity state vector of a Cluster spacecraft using successively the 

orbit and pr2000 routines. 
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9. MATHEMATICS 

9.1 INTRODUCTION 

In this section we describe the routines encountered in the transformation of vectors, 

conversion of angles,...... 

9.2 ANGLE OF A VECTOR WITH RESPECT TO AXIS X IN A (X, Y) 
COORDINATE SYSTEM KNOWING ITS TWO COMPONENTS X AND 
Y 

Given two components x, y of a vector it is possible to calculate the angle between 0, 2 using 

fortran function a tan 2: 

 

 xya ,2tan  (1) 

 

This calculation is performed in routine angleg. For x, y both zero, the routine returns  = 0 

and in other cases  is always positive. 

9.3 TRANSFORMATION OF THE CARTESIAN COORDINATES OF 
A POINT INTO ITS SPHERICAL COORDINATES 

Z

P

z

r


y
YO

x rp

X
 

 

Figure 1 

 

The spherical coordinates (r, , ) are obtained from the cartesian coordinates (x, y, z) using 

the following formulae: 
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 

 xya

rza

zyxr

,2tan

cos

222









  (2) 

 

 is the colatitude and  is the azimuth. 

 

We define 222 yxrp  . If rp  0 the above formulae can be applied. 

 

If rp = 0 we set  = 0 and we have two possibilities: 

 

z  0 then  = 0 

z < 0 then  =  

 

This transformation is performed in routine carsp. 

9.4 TRANSFORMATION OF THE SPHERICAL COORDINATES OF A 
POINT INTO ITS CARTESIAN COORDINATES 

The transformation from spherical coordinates to cartesian coordinates is defined as: 

 







cos

sinsin

cossin

rz

ry

rx







 (3) 

 

where  is the colatitude of the point and  is the azimuth. r is the radial distance to the origin. 

This transformation is performed in routine spcar. 

9.5 PRODUCT OF A COLUMN MATRIX BY A RECTANGULAR 
(UNITARY) MATRIX 

The product is defined by the formula: 

 




3

1j
jiji xay  (4) 

 

The matrix aij is a matrix of dimensions (3,3), vectors x, y have three components (x1, y1, z1) 

and (y1, y2, y3). 

 

This calculation is performed in the routine promal. 
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9.6 PRODUCT OF TWO UNITARY MATRICES 

The product of two matrices is defined as: 

 




3

1k

j

k

k

iij bac  (5) 

 

The transpose (inverse) matrix is defined as i

j

j

i cc   

 

The product of two matrices of dimension (3,3) is performed in routine promat which also 

provides the inverse matrix of the result. 

9.7 TRANSFORMATION OF THE RECTANGULAR COMPONENTS 
OF A VECTOR INTO SPHERICAL COMPONENTS 

Z

Vz

A

B



O



Vx

X

Vy
Y

V


 
 

Figure 2 

 

If point A is located in (r, , ) we get: 

 

 
 











sincos

sincossincos

cossinsincos

xy

zyx

zyxr

VVV

VVVV

VVVV







 (6) 

 

This transformation is performed in routine vcarvsp. 
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9.8 TRANSFORMATION OF THE SPHERICAL COMPONENTS OF A 
VECTOR INTO RECTANGULAR COMPONENTS 

Z

X

Y

Vr

V

V





 
 

Figure 3 

 

We get: 

 

 

 













sincos

cossincossin

sincoscossin

VVV

VVVV

VVVV

rz

ry

rx







 (7) 

 

The transformation is performed in routine vspvcar. 

9.9 LAGRANGE INTERPOLATION FORMULA 

Interpolation can be performed by a Lagrange polynomial of order 2. Using the definition of 

Abramowitz and Stegun (Ref. 1) we have: 

 

   


n

i
ii fxlxf

0

 (8) 

 

where  
 

   ini

n
i

xxx

x
xl
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li(x) is of the form: 
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We obtain for n = 2 
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and the interpolation formula for n = 3 is: 

 

        221100 fxlfxlfxlxf   

 

where f0, f1, f2 are the values of f(x) at points x0, x1, x2. 

This formula has been used for the calculation of the conjugate point at a given altitude or at 

the surface of the Earth using three calculated points. 
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