CDPP - 3DVIEW

Réf. : CNES/CDPP-3DView/PRD/DOC/MEMU

CDPP-MU-32600-537-G	F	L
---------------------	---	---

Révision	· 00	Date	. 21/07/2010	
MT :>	(Code d	liffusion	: E

MANUEL D'UTILISATION 3DVIEW

Rédigé par :		le :	
BEIGBEDER Laurent	GFI INFORMATIQUE		
Validé par :		le :	
TONIUTTI Jean-Philippe	GFI INFORMATIQUE		

CDPP - 3DView Manuel d'utilisation 3DView
 CDPP-MU-32600-537-GFI

 Edit.
 : 01
 Date
 : 21/07/2016

 Rév.
 : 00
 Date
 : 21/07/2016

Référence : CNES/CDPP-3DView/PRD/DOC/MEMU

Page : i.2

BORDEREAU D'INDEXATION

CONFIDENTIALI NC	ENTIALITE : MOTS CLES : Exploitation, Utilisation, CDPP, 3DVIew					
TITRE DU DOCU	MENT :					
			Manuel d	'utilisation		
			3D\	/iew		
AUTEUR(S) :						
В	EIGBEDER Lauren	t		GFI INFORMATIQUE		
RESUME : Manu	el d'exploitation	et d'utilis	ation du logiciel C	DPP 3DView	•	
DOCUMENTS RATTACHES : Ce document vit seul. LOCALISATION : CNES/CDPP-3DView/PRD/DOC				: View/PRD/DOC		
VOLUME : 1	NBRE TOTAL DE	PAGES : 1	19	DOCUMENT COMPOSITE : N LANGUE : FR		
	DONT PAGES LI	MINAIRES	5:5			
	NBRE DE PAGES	SUPPL. :	0			
GESTION DE CO	NF. : NG		RESP. GEST. CON	F.:		
CAUSE D'EVOLU	TION : Prise en c	ompte des	s retours recette d	le la version logicielle	e V1.11	
CONTRAT : Bon de commande MARCHE SOUS ACCORD-CADRE N° 151283						
SYSTÈME HÔTE :						
Microsoft Word 11.0 (11.0.5604)						
L:\CLASS	E1\Modèles wor	d\GDOC \	/3.1.8\ModeleGD	OCIndus_2015.dot		
version	Version GDOC : v3.1.8					

CDPP - 3DView

Manuel d'utilisation 3DView

DIFFUSION EXTERNE

Nom	Sigle	Врі	Observations
DUFOURG Nicolas	DCT/ME/EU	612	
DURAND Joëlle	DCT/ME/EU	612	

DIFFUSION INTERNE

Nom	Sigle	Observations
BEIGBEDER Laurent	GFI INFORMATIQUE	
CAUSSARIEU Stéphane	GFI INFORMATIQUE	
POPESCU Daniel	GFI INFORMATIQUE	
TONIUTTI Jean-Philippe	GFI INFORMATIQUE	

Référence : CNES/CDPP-3DView/PRD/DOC/MEMU

CDPP - 3DView

Manuel d'utilisation 3DView

Page : i.4

MODIFICATION

Ed.	Rév.	Date	Référence, Auteur(s), Causes d'évolution		
01	00	21/07/2016	CNES/CDPP-3DView/PRD/DOC/MEMU		
			BEIGBEDER Laurent GFI INFORMATIQUE		
			Prise en compte des retours recette de la version logicielle V1.11		
00	01	22/06/2016	CNES/CDPP-3DView/PRD/DOC/MEMU		
			BEIGBEDER Laurent GFI INFORMATIQUE		
			Mise à jour au titre de la version logicielle V1.11		
00	00	04/12/2015	CNES/CDPP-3DView/PRD/DOC/MEMU		
			BEIGBEDER Laurent GFI INFORMATIQUE		
			Création du document		

Page : i.5

SOMMAIRE

GLOSSAIRE ET LISTE DES PARAMETRES AC & AD	1
1. GENERALITES	2
1.1. DOCUMENTS APPLICABLES	2
1.2. DOCUMENTS DE REFERENCE	2
2. INTRODUCTION	3
3. EXPLOITATION	4
3.1. AJOUTER UN FICHIER D'ORBITE OU D'ATTITUDE POUR UNE MISSION 3.1.1. Données directement disponibles en SPICE kernel	4 4
3.1.2. Données disponibles sur le sscweb	5
3.2. FICHIERS DE CONFIGURATION DE L'APPLICATION WEB 3.2.1. Fichiers de l'application web	6 7
3.2.1.1. bodies.properties	7
3.2.1.2. services.properties	9
3.2.1.3. configuration des dennées	9
3.2.2. Configuration des donnees	10 10
3 2 2 2 scharams conf	10
3.2.2.3. starfiles.conf	11
3.2.2.4. scinstruments.conf	11
3.2.2.5. groundlabels.conf	12
3.2.2.6. frames.conf	12
3.2.2.7. crmaps.conf	13
3.2.2.8. projmaps.conf	13
4. UTILISATION	14

GFI INFORMATIQUE	CDPP-MU-32600-537-GFI			
CDPP - 3DView	Edit. :01 Date :21/07/2016			
Manuel d'utilisation 3DView	Rév. :00 Date :21/07/2016			
Référence : CNES/CDPP-3DView/PRD/DOC/MEMU	Page : 1			

GLOSSAIRE ET LISTE DES PARAMETRES AC & AD

AMDA	Automated Multi Dataset Analysis
CDPP	Centre de Données de Physique des Plasmas
COROT	Convection, Rotation et Transits planétaires
FMI	Finnish Meteorological Institute
IMPEx	Integrated Medium for Planetary Exploration
LATMOS	Laboratoire Atmosphères, Milieux, Observations Spatiales
MEX	Mars-Express
NAIF	Navigation and Ancillary Information Facility
SINP	Skobeltsyn Institute of Nuclear Physics
SPICE	Spacecraft ephemeris, Planet location, Instrument, Pointing and Events kernels
VEX	Venus-Express

Liste des paramètres AC :

Liste des paramètres AD :

1.GENERALITES

1.1.DOCUMENTS APPLICABLES

DA1 Cf. les DA du Répertoire de la documentation 3DView/CDPP L. BEIGBEDER, 21/07/2016, Issue 01, Rev. 00 CDPP-LI-32600-532-GFI

1.2.DOCUMENTS DE REFERENCE

DR1 Cf. les DR du Répertoire de la documentation 3DView/CDPP L. BEIGBEDER, 21/07/2016, Issue 01, Rev. 00 CDPP-LI-32600-532-GFI

GFI INFORMATIQUE	CDPP-MU-32600-537-GFI			
CDPP - 3DView	Edit. :01 Date :21/07/2016			
Manuel d'utilisation 3DView	Rév. :00 Date :21/07/2016			
Référence : CNES/CDPP-3DView/PRD/DOC/MEMU	Page : 3			

2.INTRODUCTION

CDPP 3Dview est une application interactive de visualisation 3D animée de trajectoires et d'attitudes de sondes interplanétaires du système solaire ainsi que de données physiques.

L'outil, basé sur une architecture SOA, est orienté science avec l'affichage de modèles scientifiques et l'intégration de web services.

Il est issu de la version 3DView IMPEx. Elle était destinée à comparer des modèles théoriques issus de simulation de différents laboratoires (LATMOS, FMI, SINP) à des données d'observation d'AMDA et du CDAWeb.

Cette version, en ajoutant de nouvelles fonctionnalités, ouvre le 3DView à des secteurs autres que le plasma, comme la planétologie.

CDPP 3Dview est un outil « léger », interactif et intuitif dont la prise en main est facile et permet une grande autonomie d'utilisation.

GFI INFORMATIQUE		CDPP-MU-32600-537-GFI			
CDPP - 3DView		: 01	Date	: 21/07/2016	
Manuel d'utilisation 3DView	Rév.	: 00	Date	: 21/07/2016	
Référence : CNES/CDPP-3DView/PRD/DOC/MEMU		4			

3.EXPLOITATION

Ce chapitre recense les opérations de maintenance afin de permettre à l'IRAP un maximum d'autonomie.

3.1.AJOUTER UN FICHIER D'ORBITE OU D'ATTITUDE POUR UNE MISSION

3.1.1.Données directement disponibles en SPICE kernel

Le plus souvent, les données sont disponible via le site de la naif : <u>http://naif.jpl.nasa.gov/naif/data_operational.html</u>

Les fichiers d'orbites sont les fichiers SPK (*.bsp).

Exemple pour ajouter un fichier CASSINI :

- Depuis la page <u>http://naif.jpl.nasa.gov/naif/data operational.html</u>, cliquer sur « outer planet missions ».
- Puis dans le tableau cliquer sur la case CASSINI/SPK pour aller dans le répertoire des fichiers d'orbite de CASSINI. Lire le fichier aareadme.txt pour une explication sur le contenu du répertoire.
- Dans notre cas, nous allons télécharger le fichier 040622AP_SK_04122_08222.bsp qui contient les données de l'orbiter (SK).
- Le fichier 040622AP_SK_04122_08222.bsp.**lbl** permet d'avoir des renseignements sur ce fichier, notamment la période de couverture en « ephemeris time » (ET) ou TDB :
 - -82 CASSINI 2004 MAY 01 12:00:00.000 2008 AUG 09 00:00:00.000

Une fois toutes les informations récoltées, il faut les ajouter à la base de fichier 3DView :

- Copier le fichier d'orbite dans le répertoire /home/i3dv_exp/i3dv_files/orbitfiles/spice/art/cass
- Renseigner le fichier d'index /home/i3dv_exp/i3dv_files/orbitfiles/naiffiles.lst.

Chercher les lignes existantes avec l'id -82 (id naif de cassini).

Y ajouter une ligne pour le nouveau fichier contenant le chemin vers le fichier ainsi que les dates de couverture :

-82;cass/040622AP_SK_04122_08222;2004-05-01T13:00:00.000;2008-08-08T23:00:00.000

GFI INFORMATIQUE	CDPP-MU-32600-537-GFI
CDPP - 3DView	Edit. :01 Date :21/07/2016
Manuel d'utilisation 3DView	Rév. :00 Date :21/07/2016
Référence : CNES/CDPP-3DView/PRD/DOC/MEMU	Page : 5

Laisser une heure de marge par rapport à la vraie couverture du fichier.

 Renseigner le fichier de couverture globale des missions /home/i3dv_exp/i3dv_files/orbitfiles/sccoverage.lst.

Pour cela, repérer la ligne avec l'id -82 et étendre la couverture si le fichier couvre une période plus étendue que précédemment. Dans notre cas, la période est déjà couverte donc aucune modification n'est à réaliser dans ce fichier.

3.1.2. Données disponibles sur le sscweb

L'orbite des satellites présents au SSCWeb peut être importée. Les données sont mis à jour manuellement via le script \$HOME/i3dv/server/dpc/script/updatefilessscweb.ksh.

Le fichier de configuration est situé dans \$HOME/i3dv_files/conf/updfilesscweb.conf.

Pour chaque satellite à mettre à jour il faut le déclarer dans le fichier de configuration via une ligne de paramètres. Celui-ci décrit comment renseigner les informations :

#1: description #2: local kernel name #3: mission name to be retreived from sscweb #4: naif id #5: step in seconds #6: start date to retreive #7: stop date to retreive #8: relative path top store file from orbit_files dir. must end with sscweb # #id for earth oriting spacecraft without ID #If an Earth orbiting spacecraft lacks a DSN identification code, the NAIF ID is derived from the tracking ID assigned to it by the US Space Command via: NAIF ID = -100000 - US Space Command code #For example US Space Command assigned the code 15427 to the NOAA 9 spacecraft. This code corresponds to the NAIF ID -115427. #List of ids: http://nssdc.gsfc.nasa.gov/nmc/SpacecraftQuery.jsp, http://satellitedebris.net/Database/ # #*****WARNING WHEN ADDING NEW SC, SET preferences in i3dv/server/web/conf/scparams.conf

Exemple pour la mission cluster :

#Update patterns for cluster #CLUSTER1;cluster1.bsp;cluster1;-183;1200;2000-08-01T00:00;00;2022-01-01T00:00:00;spice/art/sscweb #CLUSTER2;cluster2.bsp;cluster2;-185;1200;2000-08-01T00:00:00;2022-01-01T00:00:00;spice/art/sscweb #CLUSTER3;cluster3.bsp;cluster3;-194;1200;2000-08-01T00:00:00;2022-01-01T00:00:00;spice/art/sscweb #CLUSTER4;cluster4.bsp;cluster4;-196;1200;2000-08-01T00:00:00;2022-01-01T00:00:00;spice/art/sscweb

3.2.FICHIERS DE CONFIGURATION DE L'APPLICATION WEB

Le serveur fournit les services grâce à une application web hébergée sous Apache Tomcat.

Pour les données contenues dans des fichiers de configuration, une lecture directe depuis l'application web est réalisée.

Voici la répartition des types d'accès en fonction des demandes :

	Fichiers de configuration	Exécution de programme natif
Orbite		Х
Attitude		Х
Etoiles		Х
Recherche de comète/aséroïde		Х
Liste des sondes	Х	
Taille des planètes		Х
Orientation des panneaux solaires		Х
Liste des instruments	Х	
Liste des kernels étoiles	Х	
Liste des planètes	Х	
Liste de frames	Х	

Voici une description des fichiers de configuration qui permettent de lister et personnaliser les objets affichés. Ces fichiers sont localisés à trois endroits différents :

Dans l'appli web WEB-INF/classes :

bodies.properties : liste et caractéristiques des sondes, planètes à afficher...

services.properties : noms et paramètres pour lancer les programmes natifs

conf.properties : paramètres de l'application web

Dans le répertoire \$HOME/i3dv_files/conf

updfilesscweb.conf : liste des données des missions sscweb à mettre à jour.

updfiles.conf : liste des autres missions à mettre à jour.

GFI INFORMATIQUE	CDPP-MU-32600-537-GFI
CDPP - 3DView	Edit. :01 Date :21/07/2016
Manuel d'utilisation 3DView	Rév. :00 Date :21/07/2016
Référence : CNES/CDPP-3DView/PRD/DOC/MEMU	Page : 7

Dans le répertoire \$HOME/i3dv/server/web/conf

groundstations.conf: liste des stations terrestres et leurs propriétés

scparams.conf: propriétés spécifiques aux sondes

starfiles.conf: liste des noyaux d'étoiles

scinstruments.conf : liste les instruments des missions et leur représentation

groundlabels.conf : liste des labels au sol par mission

frames.conf : liste des différents systèmes de coordonnées

projmaps.conf : liste des cartes de projection

crmaps.conf : liste des types de cartes de Carrington

3.2.1. Fichiers de l'application web

3.2.1.1.bodies.properties

Voici un exemple de contenu de ce fichier :

#available bodies in services, do not add space between commas m3dv.bodies.art=-1,-8,-21,-31,-32,-41,-55,-77,-82,-92,-183,-185,-194,-196,-226,\ -234,-235,-236,-337,-338,-339,-340,-341,-248,\ -551,-486,-489,-552,-553,-554,-555,-78,-556,-74,-76,-61,-907,-202,-68,-69,-999,-94,-20180731,\ -110422,-110423,-111004,-128140,-128382,-106893,-13,\ -301,-302,-140482,-140483,-140484,-140485 m3dv.bodies.nat=10,199,299,399,301,499,401,402,599,501,502,503,504,505,514,699,601,602,603,604,605,606,607,608,799, 701,702,703,704,705,899,801,802,999,901,1000012,2000021,2002867,1000036,1000034 # spacecraft names */ m3dv.bodies.art.name=GEOTAIL,WIND,SOHO,Voyager 1,Voyager 2,MEX,ULYSSES,Galileo,Cassini,ACE,CLUSTER1,CLUSTER2,C LUSTER3,CLUSTER4,Rosetta, Stereo-A,Stereo-B,MESSENGER,THEMIS-A,THEMIS-B,THEMIS-C,THEMIS-D,THEMIS-E,\ VEX,COROT,Herschel,Planck,SVOM,Jason 2, INTERBALL-Auroral, INTERBALL-Tail,Giotto,PICARD,MRO,MSL,Juno,JUICE,MAVEN,MMO,MPO,Solar Orbiter,MGS,Solar Probe Plus, ISEE-1, ISEE-2, ISEE-3, Doublestar1, Doublestar2, IMP-8, POLAR, \ CHAMP, DEMETER, FAST, Freja, IMAGE, AMPTE/IRM, Oersted, Reimei, SDO, SwarmA, SwarmB, SwarmC, Timed, TRACE, \ Helios1, Helios2, MMS1, MMS2, MMS3, MMS4 # spacecraft models m3dv.bodies.art.model=-1,-8,-21,-31,-31,-41,-55,-77,-82,-92,-183,-183,-183,-183,-226, -234,-234,-236,-337,-337,-337,-337,-337, $-248, -551, -551, -489, -552, -553, -554, -554, -78, -556, -74, -76, -61, -907, -907, -68, -69, -999, -94, -907, \\ \land$ -110422,-110423,-111004,-128140,-128382,-106893,-13,\ -301,-301,-183,-183,-183,-183 # spacecraft attitudes Ids # spacecraft Solar array attitudes Ids

GFI INFORMATIQUE	CDPP-MU-32600-537-GFI	
CDPP - 3DView	Edit. :01 Date :21/07/2016	
Manuel d'utilisation 3DView	Rév. :00 Date :21/07/2016	
Référence : CNES/CDPP-3DView/PRD/DOC/MEMU	Page: 8	

m3dv.bodies.nat.main=10,199,299,399,499,599,699,799,899,999 m3dv.bodies.nat.all=10,199,299,399,301,499,401,402,\ 599,501,502,503,504,505,514, 699,601,602,603,604,605,606,607,608, 799,701,702,703,704,705,\ 899,801,802,999,901,1000012,2000021,2002867,1000036,1000034 m3dv.bodies.nat.name=Sun,Mercury,Venus,Earth,Moon,Mars,Phobos,Deimos, Jupiter, Io, Europa, Ganymede, Callisto, Amalthea, Thebe, Saturn, Mimas, Enceladus, Thetys, Dione, Rhea, Titan, Hyperion, Iapetus, Uranus, Ariel, Umbriel, Titania, Oberon, Miranda, Neptune, Triton, Neired, Pluto, Charon, Churyumov-Gerasimenko, Lutetia, Steins, Halley, Grigg-Skjellerup m3dv.bodies.nat.color=#FEF67A,#737373,#948B62,#96A2EA,#CBF5F9,#FF622B,#CBF5F9,#CBF5F9,\ #FFED9B,#CBF5F9,#CBF5F9,#CBF5F9,#CBF5F9,#CBF5F9, #FFFB16,#CBF5F9,#CBF5F9,#CBF5F9,#CBF5F9,#CBF5F9,#CBF5F9,#CBF5F9,#CBF5F9, #0087d5,#CBF5F9,#CBF5F9,#CBF5F9,#CBF5F9,\ #3116C0,#CBF5F9,#CBF5F9,#B6B4C0,#CBF5F9,#CBF5F9,#CBF5F9,#CBF5F9,#CBF5F9,#CBF5F9,#CBF5F9

m3dv.bodies.art : liste des id naif des sondes à proposer accessibles par web service

m3dv.bodies.nat : liste des id naif des corps naturels à proposer accessibles par web service

m3dv.bodies.art.name : liste des noms des sondes (respectivement aux id cités dans m3dv.bodies.art)

m3dv.bodies.art.model : id des modèles de sonde utilisés. Par exemple, lorsqu'il y a quatre id pour la mission cluster, seul le premier possède un modèle 3D et est utilisé pour les quatre.

m3dv.bodies.art.att : liste des id naif d'attitude correspondant aux id naifs des sondes. La norme est que l'id attitude = id sonde *1000. Pour les sondes ne possédant pas d'attitude, mettre 0.

m3dv.bodies.nat.main : planètes principales (pas les satellites ni les petits objets)

m3dv.bodies.nat.all : liste des id naif des corps naturels (planètes, satellites, comètes, ..)

m3dv.bodies.nat.name : noms des planètes respectifs aux id

m3dv.bodies.nat.color : couleurs des trajectoires et noms des planètes respectifs aux id

GFI INFORMATIQUE	CDPP-MU-32600-537-GFI
CDPP - 3DView	Edit. : 01 Date : 21/07/2016
Manuel d'utilisation 3DView	Rév. :00 Date :21/07/2016
Référence : CNES/CDPP-3DView/PRD/DOC/MEMU	Page:9

3.2.1.2.services.properties

Ce fichier est utilisé pour pouvoir appeler les programmes natifs d'accès aux noyaux SPICE. Il contient les noms des paramètres à passer, les répertoires des exécutables, librairies, ...

Voici un exemple des valeurs pour les paramètres. Les noms sont suffisamment explicites pour comprendre leur fonction :

m3dv.native.libs.dir.path=LD_LIBRARY_PATH=/usr/lib		
m3dv.native.exes.dir.path=/home/i3dv_dev/i3dv/server/web/native/exe/bin		
m3dv.native.exe.orb=listOrbData.exe		
m3dv.native.exe.orb2=listOrbData2.exe		
m3dv.native.exe.att=listAttData.exe		
m3dv.native.exe.att2=listAttData2.exe		
m3dv.native.exe.eme=listEmeAttData.exe		
m3dv.native.exe.stars=listStars.exe		
m3dv.native.exe.size=getSize.exe		
m3dv.native.exe.insts=getFov.exe		
m3dv.native.exe.inregion=listIdsInRegion.exe		
m3dv.native.exe.newFrameAtt=convertFrameData.exe		
m3dv.native.exe.newFrameOrb=convertFrameData.exe		
m3dv.native.orb.param=I3DV_ORBIT_DIR		
m3dv.native.log.param=I3DV_LOG_FILE		
m3dv.native.log.path=/home/i3dv_exp/i3dv_files/logs/i3dvdev_web_native.log		
m3dv.model.native.exe.tsy=tsy96.exe		
m3dv.model.native.exe.cain=cain_impex.exe		
m3dv.model.native.exe.cain.coeff.path=/home/i3dv_dev/i3dv/server/web/native/exe/models/FSU_mars90		

3.2.1.3.conf.properties

Ce fichier contient essentiellement la localisation des différents fichiers de configuration :

m3dv.conf.dir.path=/home/i3dv_exp/i3dv/server/web/conf m3dv.conf.scparams.file.path=/home/i3dv_exp/i3dv/server/web/conf/scparams.conf m3dv.conf.frames.file.path=/home/i3dv_exp/i3dv/server/web/conf/frames.conf m3dv.conf.scinsts.file.path=/home/i3dv_exp/i3dv/server/web/conf/scinstruments.conf m3dv.conf.groundstations.file.path=/home/i3dv exp/i3dv/server/web/conf/groundstations.conf m3dv.conf.projmaps.file.path=/usr/share/tomcat6/webapps/ESSAI/images/textures/projmaps.conf m3dv.conf.crmaps.file.path=/home/i3dv_dev/i3dv/server/web/conf/crmaps.conf m3dv.conf.stars.file.path=/home/i3dv_exp/i3dv/server/web/conf/starfiles.conf m3dv.conf.web.pub.dir.path=/usr/share/tomcat6/webapps/ESSAI/pub m3dv.conf.rep.dir.path=/home/i3dv_exp/i3dv_files/commonres m3dv.orbito.dir.path=/home/i3dv_exp/i3dv_files/orbitfiles m3dv.lst.naifidx.file.path=/home/i3dv_exp/i3dv_files/orbitfiles/naiffiles.lst m3dv.crmaps.dir.path=/home/i3dv exp/i3dv files/carringtonmap m3dv.cmefits.dir.path=/home/i3dv_exp/i3dv_files/fitcatalog/CME m3dv.lst.coverageidx.file.path=/home/i3dv exp/i3dv files/orbitfiles/sccoverage.lst m3dv.lst.genkernels.file.path=/home/i3dv exp/i3dv files/orbitfiles/spice/kernels.txt m3dv.test=false

GFI INFORMATIQUE	CDPP-	MU-32600	-537-GFI		
CDPP - 3DView	Edit.	: 01	Date	: 21/07/2016	
Manuel d'utilisation 3DView	Rév.	: 00	Date	: 21/07/2016	
Référence : CNES/CDPP-3DView/PRD/DOC/MEMU	Page :	10			

3.2.2.Configuration des données

3.2.2.1.groundstations.conf

Il liste les stations au sol de la terre.

Pour chaque station, on peut paramétrer le nom, la longitude, la latitude, l'angle de visibilité et la couleur du cône qui sera affiché.

Extrait :

```
#format is: scid, name, RA, DEC, visibility angle (deg) ,color
-226;Kiruna;20.42;67.83;60;#0000FF;1000
-226;Alcantara;-43.5;-2.5;60;#00FF00;1000
-551;Aussaguel;1.5;43.5;60;#FF0000;1000
```

3.2.2.scparams.conf

Il permet de personnaliser l'interface en fonction de la sélection des missions. Par exemple, lorsqu'une mission est sélectionnée, le système de coordonnée, les corps centraux proposés et les planètes sélectionnables seront présélectionnés et filtrés.

Extrait :

```
#List specific parameters for each spacecrafts
#Format:
# naifld ; coordsys ; center ; planetId[ planetId[ planetId][ ...]];[specific star choice index only for Corot for the moment.]
#
# coordsys: EMEJ2000 1, ECLIPJ2000 2, GSE 3, MSO 4, VSO 5, GSM 6, SM 7
# center: SUN 10, MERCURY 199, VENUS 299, EARTH 399, MARS 499, 599, 699, 799, 899, 999, ...
#
#ROSETTA
-226;2;10;299 399 499 599 1000012 2000021 2002867
#COROT
-551;1;399;301;10
#MEX
-41;4;499;399 401 402
```

GFI INFORMATIQUE	CDPP-MU-32600-537-GFI
CDPP - 3DView	Edit. :01 Date :21/07/2016
Manuel d'utilisation 3DView	Rév. :00 Date :21/07/2016
Référence : CNES/CDPP-3DView/PRD/DOC/MEMU	Page:11

3.2.2.3.starfiles.conf

Il liste les noyaux d'étoiles disponibles qui seront proposée via l'interface web à l'utilisateur.

En séparant les noyaux par ":", on peut en spécifier plusieurs pour un même choix.

Un 3^{ième} paramètre dans la ligne spécifie le noyau à choisir par défaut sauf paramétrage particulier pour une mission dans scparams.conf.

Extrait :

#spice dbk star files #put a ; <anything> to tag default selection</anything>
all vm<5;tycho2_vm5.dbk all vm<6;tycho2_vm6.dbk;S all vm<7;tycho2_vm7.dbk corot vm<7;tycho2_corot_vm7_104.dbk:tycho2_corot_vm7_284.dbk corot vm<8;tycho2_corot_vm8_104.dbk:tycho2_corot_vm8_284.dbk

3.2.2.4. scinstruments.conf

Il définit les instruments des sondes permettant de préremplir la boite de dialogue View instrument direction.

Chaque ligne contenue peut avoir deux formats différents.

Soit descriptif :

idnaif ; nom instrument ; CONE | LINE ; couleur ; x ; y ; z ; HFov(Deg) ; VFov(Deg); FrontClip(km); BackClip(km) ; type de longueur du cone (Y/N) ; id naif d'adaptation de longueur ou longer fixe de 0 à 100.

Exemple :

O Pointing a target	Earth 💌
Representation type Draw a line Draw a cone Set view	Cone/line color: Angle (degrees): 0.58
View simulation windo	W

SODISM

-

Object: PICARD

Fixed on attitude

Direction type

-556;SODISM;CONE;#FF00FF;-0.006;-0.0017;-0.99998;0.58;0.58;10;150000000;true;10

Le backclip est à 150 millions de km, la distance terre soleil pour que l'instrument puisse voir le soleil depuis la terre. Normalement, le rapport Frontclip/Backclip doit être de 3000 au plus.

Soit référentiel :

Chaque ligne référence uniquement un instrument défini dans des spice kernels(fk,ik) préchargés dans le fichier \$HOME/i3dv_files/orbitfiles/spice/kernels.txt.

GFI INFORMATIQUE	CDPP-MU-32600-537-GFI
CDPP - 3DView	Edit. :01 Date :21/07/2016
Manuel d'utilisation 3DView	Rév. :00 Date :21/07/2016
Référence : CNES/CDPP-3DView/PRD/DOC/MEMU	Page : 12

Le format est le suivant :

SC naifId ; instrument naifId; instrument name ; representation(CONE, LINE) ; color ; FrontClip(km); BackClip(km) ; Length adaptative(Y/N) ; naif id of adaptation or length(0/100)

3.2.2.5.groundlabels.conf

Il liste les labels sur la planète centrale pour certaines sondes.

Pour chaque label, on peut paramétrer le nom, la longitude, la latitude et la couleur du texte qui sera affiché.

Extrait :

```
-74;Viking 1;312.05;22.46;#FFFFFF
-74;Viking 2;-225.99;48.269;#FFFFFF
```

3.2.2.6.frames.conf

Il liste les systèmes de coordonnées disponibles pour les services listOrbData2, listAttData2, listFrames2, listNewFrameAtt, listNewFrameOrb.

Ces systèmes sont soit définis en natif dans la spicelib (J2000, ECLIPJ2000) soit déclarés dans le fichier impex.tf situé dans le répertoire \$HOME/i3dv_files/orbitfiles/spice et inclus dans le fichier \$HOME/i3dv_files/orbitfiles/spice/kernels.txt.

Pour chaque système, on doit paramétrer l'id, le nom, le centre et la description.

Extrait :

```
#Format:
#
   naifId ; name ; center naifId; description
#
# SUN
1;J2000;10;Earth mean equator, dynamical equinox of J2000
17;ECLIPJ2000;10;Ecliptic coordinates based upon the J2000 frame
1600010;HEE;10;Heliocentric Earth Ecliptic
1601010;HEEQ;10;Heliocentric Earth Equatorial
1602010;HCI;10;Heliocentric Inertial
#MFRCURY
1600199;MEME;199;EME2000 centered on Mercury
1601199;MECLIP;199;ECLIPJ2000 centered on Mercury
1603199;MESO;199;Mercury-centric Solar Orbital
#VENUS
1600299;VSO;299;Venus-centric Solar Orbital
1601299;VME;299;Venus Mean Equator
#EARTH
1600399;GSE;399;Geocentric Solar Ecliptic
1601399;EME;399;Earth Mean Equator and Equinox
```

GFI INFORMATIQUE	CDPP-MU-32600-537-GFI
CDPP - 3DView	Edit. : 01 Date : 21/07/2016
Manuel d'utilisation 3DView	Rév. :00 Date :21/07/2016
Référence : CNES/CDPP-3DView/PRD/DOC/MEMU	Page:13

3.2.2.7.crmaps.conf

Il liste les types de cartes de Carrington disponibles par le service listCRMapTypes et visible sur le client via le menu Science/load Carrington map.

Chaque type carte est identifé par l'Id du corps central, le nom de l'observateur, l'instrument de mesure, la longueur d'onde et le path du catalogue permettant de lister les cartes de Carrington d'un même type.

Extrait :

#list available Carrington map types #format is: observatory, instrument, measurement and data path

10;GONG;MAG;Mag;GONG/MAG 10;SOHO;EIT;195;SOHO/195A 10;SOHO;EIT;304;SOHO/304A 10;SOHO;MDI;Mag;SOHO/MDI 10;SDO;HMI;Mag;SDO/MAG 10;STEREO-A;EUVI;195;STEREO-A/195A 10;STEREO-A;EUVI;304;STEREO-A/304A 10;STEREO-B;EUVI;195;STEREO-B/195A 10;STEREO-B;EUVI;304;STEREO-B/304A

3.2.2.8.projmaps.conf

Il liste les maps disponible par le service listProjMaps et visible sur le client via le menu Science/load map.

Pour chaque carte, on peut paramétrer le corps, le nom, l'altitude, la description puis le nom du fichier de texture (jgpg, gif ou png) situé dans l'appliweb (images/textures).

Extrait :

#list projection maps and their properties #format is: body naif id, name, altitude from surface (km), description, path from texture directory 10;Default;0;Standard colored texture;10_texture.jpg 199;Default;0;Standard colored texture;199_texture.jpg 299;Default;0;Standard colored texture;299_texture.jpg 399;Default;0;Standard colored texture;399_texture.jpg 399;Magnetic;0;Custal magnetic anomalies;399_Magnetic_texture.jpg 399;Height;0;Height map;399_Custom_texture.jpg 399;Night;0;Night city map 1024x512;399_earthlights1k.jpg 399;Clouds;300;Cloud map 1024x512;399_earthcloudmap.png 499;Default;0;Standard colored texture;499_texture.jpg 499;Crustal Morschhauser;180;Morschhauser map at 180km;499_morschhauser_180.jpg 499;Crustal Connerney;400;Connerney J.E.P. et al.(2005) Proc. Nati. Acad. Sci USA, 102, No. 42, 14970-14975;499_Magnetic_texture.jpg

GFI Informatique	CDPP-MU-32600-537-GFI
CDPP - 3DView	Edit. :01 Date :21/07/2016
Manuel d'utilisation 3DView	Rév. :00 Date :21/07/2016
Référence : CNES/CDPP-3DView/PRD/DOC/MEMU	Page : 14

4.UTILISATION

L'utilisation de l'application CDPP/3DView est décrite dans le document « 3DView IMPEx 1.7 user guide ».

<u>Avertissement</u> : il peut y avoir des problèmes de libération de mémoire liés à la technologie utilisée. Ce type de problème est tracé dans la console Java par le message « *java.lang.OutOfMemoryError: Java heap space* »